Building consensus around the assessment and interpretation of Symbiodiniaceae diversity

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.

[1]  R. Waller,et al.  Nuclear transformation of a dinoflagellate symbiont of corals , 2022, Frontiers in Marine Science.

[2]  J. Wiedenmann,et al.  Mutualistic dinoflagellates with big disparities in ribosomal DNA variation may confound estimates of symbiont diversity and ecology in the jellyfish Cotylorhiza tuberculata , 2022, Symbiosis.

[3]  Shenmin Zhang,et al.  Cultured Bacteria Provide Insight into the Functional Potential of the Coral-Associated Microbiome , 2022, mSystems.

[4]  Sivakumar Natesan,et al.  Identification of coral endosymbionts of Veedhalai and Mandapam coasts of Palk Bay, India using small subunit rDNA , 2022, Bioinformation.

[5]  Robert E. Jinkerson,et al.  Cnidarian-Symbiodiniaceae symbiosis establishment is independent of photosynthesis , 2022, Current Biology.

[6]  D. Bhattacharya,et al.  Alignment-Free Analysis of Whole-Genome Sequences From Symbiodiniaceae Reveals Different Phylogenetic Signals in Distinct Regions , 2022, Frontiers in Plant Science.

[7]  S. Davy,et al.  Proteome metabolome and transcriptome data for three Symbiodiniaceae under ambient and heat stress conditions , 2022, Scientific data.

[8]  N. Lemoine,et al.  Thank you for biting: dispersal of beneficial microbiota through 'antagonistic' interactions. , 2022, Trends in microbiology.

[9]  Timothy G. Stephens,et al.  Genome-powered classification of microbial eukaryotes: focus on coral algal symbionts. , 2022, Trends in microbiology.

[10]  D. Suggett,et al.  Toward bio‐optical phenotyping of reef‐forming corals using Light‐Induced Fluorescence Transient‐Fast Repetition Rate fluorometry , 2022, Limnology and Oceanography: Methods.

[11]  A. Correa,et al.  Thermal stress triggers productive viral infection of a key coral reef symbiont , 2021, The ISME Journal.

[12]  A. Fotopoulou,et al.  Gender and geographical disparity in editorial boards of journals in psychology and neuroscience , 2021, Nature Neuroscience.

[13]  B. Bentlage,et al.  Microbiome Structuring Within a Coral Colony and Along a Sedimentation Gradient , 2022, Frontiers in Marine Science.

[14]  Jiayuan Liang,et al.  Multi-Omics Revealing the Response Patterns of Symbiotic Microorganisms and Host Metabolism in Scleractinian Coral Pavona minuta to Temperature Stresses , 2021, Metabolites.

[15]  R. Cunning,et al.  Symbiont shuffling induces differential DNA methylation responses to thermal stress in the coral Montastraea cavernosa , 2021, Molecular ecology.

[16]  D. Lirman,et al.  Census of heat tolerance among Florida's threatened staghorn corals finds resilient individuals throughout existing nursery populations , 2021, Proceedings of the Royal Society B.

[17]  D. Barshis,et al.  Extending the natural adaptive capacity of coral holobionts , 2021, Nature Reviews Earth & Environment.

[18]  Jose V. Lopez,et al.  The Aquatic Symbiosis Genomics Project: probing the evolution of symbiosis across the tree of life , 2021, Wellcome Open Research.

[19]  M. Medina,et al.  Elucidating gene expression adaptation of phylogenetically divergent coral holobionts under heat stress , 2021, Nature Communications.

[20]  Estradivari,et al.  Limited Progress in Improving Gender and Geographic Representation in Coral Reef Science , 2021, Frontiers in Marine Science.

[21]  M. Viglino,et al.  How Latin American researchers suffer in science , 2021, Nature.

[22]  A. Correa,et al.  Direct evidence of sex and a hypothesis about meiosis in Symbiodiniaceae , 2021, Scientific Reports.

[23]  C. R. Voolstra,et al.  Symbiodinium microadriaticum (coral microalgal endosymbiont). , 2021, Trends in genetics : TIG.

[24]  J. Strugnell,et al.  Signatures of Adaptation and Acclimatization to Reef Flat and Slope Habitats in the Coral Pocillopora damicornis , 2021, Frontiers in Marine Science.

[25]  M. Woodward,et al.  Representation of Women Among Editors in Chief of Leading Medical Journals , 2021, JAMA network open.

[26]  G. McFadden,et al.  Cell wall proteomic analysis of the cnidarian photosymbionts Breviolum minutum and Cladocopium goreaui , 2021, The Journal of eukaryotic microbiology.

[27]  Senjie Lin,et al.  Spatial organization of dinoflagellate genomes: Novel insights and remaining critical questions , 2021, Journal of phycology.

[28]  A. Quattrini,et al.  Consensus Guidelines for Advancing Coral Holobiont Genome and Specimen Voucher Deposition , 2021, Frontiers in Marine Science.

[29]  D. Haelewaters,et al.  Ten simple rules for Global North researchers to stop perpetuating helicopter research in the Global South , 2021, PLoS Comput. Biol..

[30]  A. Mayfield,et al.  Molecular Mechanisms of Coral Persistence Within Highly Urbanized Locations in the Port of Miami, Florida , 2021, Frontiers in Marine Science.

[31]  E. Volchan,et al.  Facing Racism and Sexism in Science by Fighting Against Social Implicit Bias: A Latina and Black Woman’s Perspective , 2021, Frontiers in Psychology.

[32]  Kenneth D. Hoadley,et al.  Different functional traits among closely related algal symbionts dictate stress endurance for vital Indo‐Pacific reef‐building corals , 2021, Global change biology.

[33]  Z. Forsman,et al.  A phylogenomic examination of Palmyra Atoll’s corallimorpharian invader , 2021, Coral Reefs.

[34]  S. Goffredo,et al.  Revival of Philozoon Geddes for host-specialized dinoflagellates, ‘zooxanthellae’, in animals from coastal temperate zones of northern and southern hemispheres , 2021, European Journal of Phycology.

[35]  D. Armenteras Guidelines for healthy global scientific collaborations , 2021, Nature Ecology & Evolution.

[36]  A. Metaxas,et al.  Promoting inclusive metrics of success and impact to dismantle a discriminatory reward system in science , 2021, PLoS biology.

[37]  Y. Fujiwara,et al.  Zoantharian Endosymbiont Community Dynamics During a Stress Event , 2021, Frontiers in Microbiology.

[38]  N. Traylor-Knowles Unlocking the single-cell mysteries of a reef-building coral , 2021, Cell.

[39]  E. Howells,et al.  Physiological diversity among sympatric, conspecific endosymbionts of coral (Cladocopium C1acro) from the Great Barrier Reef , 2021, Coral Reefs.

[40]  E. Sampayo,et al.  Mutualistic microalgae co-diversify with reef corals that acquire symbionts during egg development , 2021, The ISME Journal.

[41]  D. Belhabib Ocean science and advocacy work better when decolonized , 2021, Nature Ecology & Evolution.

[42]  J. Yerbury,et al.  Disabled in academia: to be or not to be, that is the question , 2021, Trends in Neurosciences.

[43]  X. Pochon,et al.  Miliolidium n. gen, a New Symbiodiniacean Genus Whose Members Associate with Soritid Foraminifera or Are Free‐Living , 2021, The Journal of eukaryotic microbiology.

[44]  I. Baums,et al.  Genomic variation of an endosymbiotic dinoflagellate (Symbiodinium ‘fitti’) among closely related coral hosts , 2021, Molecular ecology.

[45]  J. Dekker,et al.  Genetic and spatial organization of the unusual chromosomes of the dinoflagellate Symbiodinium microadriaticum , 2021, Nature Genetics.

[46]  Alexandro E. Trevino,et al.  Transcription-dependent domain-scale three-dimensional genome organization in the dinoflagellate Breviolum minutum , 2021, Nature Genetics.

[47]  A. Tanay,et al.  A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity , 2021, Cell.

[48]  D. Suggett,et al.  Comparative volatilomics of coral endosymbionts from one- and comprehensive two-dimensional gas chromatography approaches , 2021 .

[49]  Timothy G. Stephens,et al.  Comparison of 15 dinoflagellate genomes reveals extensive sequence and structural divergence in family Symbiodiniaceae and genus Symbiodinium , 2021, BMC biology.

[50]  U. Karsten,et al.  Photophysiological Tolerance and Thermal Plasticity of Genetically Different Symbiodiniaceae Endosymbiont Species of Cnidaria , 2021, Frontiers in Marine Science.

[51]  J. Weitz,et al.  Revisiting the rules of life for viruses of microorganisms , 2021, Nature Reviews Microbiology.

[52]  Masahito Inoue,et al.  Unique environmental Symbiodiniaceae diversity at an isolated island in the northwestern Pacific. , 2021, Molecular phylogenetics and evolution.

[53]  C. Duarte,et al.  Flexibility in Red Sea Tridacna maxima‐Symbiodiniaceae associations supports environmental niche adaptation , 2021, Ecology and evolution.

[54]  William T. Harvey,et al.  Haplotype-resolved diverse human genomes and integrated analysis of structural variation , 2021, Science.

[55]  T. Morrison,et al.  Turning the tide of parachute science , 2021, Current Biology.

[56]  M. V. van Oppen,et al.  Intracellular bacteria are common and taxonomically diverse in cultured and in hospite algal endosymbionts of coral reefs , 2021, The ISME Journal.

[57]  N. Gilpin,et al.  Racial inequity in grant funding from the US National Institutes of Health , 2021, eLife.

[58]  R. Knight,et al.  High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing , 2021, Nature Methods.

[59]  N. Baliga,et al.  Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance , 2020, Molecular ecology.

[60]  M. Medina,et al.  Systems Analysis of Gut Microbiome Influence on Metabolic Disease in HIV-Positive and High-Risk Populations , 2020, bioRxiv.

[61]  Graham Stone,et al.  Waiving Article Processing Charges for Least Developed Countries. A Brick Stone of a Large-scale Open Access Transformation , 2020, ArXiv.

[62]  A. D. Jones,et al.  Metabolomic signatures of coral bleaching history , 2020, Nature Ecology & Evolution.

[63]  Y. Kobayashi,et al.  Effects of temperature, salinity and depth on Symbiodiniaceae lineages hosted by Palythoa tuberculosa near a river mouth , 2021 .

[64]  K. Koike,et al.  Fecal pellets of giant clams as a route for transporting Symbiodiniaceae to corals , 2020, PloS one.

[65]  M. Krassowski,et al.  State of the Field in Multi-Omics Research: From Computational Needs to Data Mining and Sharing , 2020, Frontiers in Genetics.

[66]  R. Gates,et al.  Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves , 2020, Nature Communications.

[67]  D. Barshis,et al.  Adaptive divergence, neutral panmixia, and algal symbiont population structure in the temperate coral Astrangia poculata along the Mid-Atlantic United States , 2020, PeerJ.

[68]  V. Weis,et al.  Limitations of Using Cultured Algae to Study Cnidarian‐Algal Symbioses and Suggestions for Future Studies , 2020, Journal of phycology.

[69]  M. Bunce,et al.  Unlocking the phylogenetic diversity, primary habitats, and abundances of free‐living Symbiodiniaceae on a coral reef , 2020, Molecular ecology.

[70]  A. Mercière,et al.  Defining Coral Bleaching as a Microbial Dysbiosis within the Coral Holobiont , 2020, Microorganisms.

[71]  N. Kriefall,et al.  Reef environments shape microbial partners in a highly connected coral population , 2020, bioRxiv.

[72]  M. Matz,et al.  Benchmarking DNA methylation assays in a reef‐building coral , 2020, Molecular ecology resources.

[73]  Z. Forsman,et al.  Host-symbiont coevolution, cryptic structure, and bleaching susceptibility, in a coral species complex (Scleractinia; Poritidae) , 2020, Scientific Reports.

[74]  K. Dzirasa Revising the a Priori Hypothesis: Systemic Racism Has Penetrated Scientific Funding , 2020, Cell.

[75]  A. Berhe,et al.  Ten simple rules for building an antiracist lab , 2020, PLoS Comput. Biol..

[76]  I. Baums,et al.  Genome-Wide DNA Methylation Analysis Reveals a Conserved Epigenetic Response to Seasonal Environmental Variation in the Staghorn Coral Acropora cervicornis , 2020, Frontiers in Marine Science.

[77]  H. Jeong,et al.  Cladocopium infistulum sp. nov. (Dinophyceae), a thermally tolerant dinoflagellate symbiotic with giant clams from the western Pacific Ocean , 2020 .

[78]  T. Hayes,et al.  Systemic racism in higher education , 2020, Science.

[79]  Valeria Ramírez-Castañeda Disadvantages in preparing and publishing scientific papers caused by the dominance of the English language in science: The case of Colombian researchers in biological sciences , 2020, PloS one.

[80]  Senjie Lin,et al.  Methylation Pattern and Expression Dynamics of Methylase and Photosystem Genes Under varying light Intensities in Fugacium kawagutii (Symbiodiniaceae) , 2020, Journal of phycology.

[81]  Chiahsin Lin,et al.  "Symbio-Cryobank": Toward the Development of a Cryogenic Archive for the Coral Reef Dinoflagellate Symbiont Symbiodiniaceae. , 2020, Biopreservation and biobanking.

[82]  R. Stocker,et al.  PhenoChip: A single-cell phenomic platform for high-throughput photophysiological analyses of microalgae , 2020, Science Advances.

[83]  M. Hellberg,et al.  Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time , 2020, Nature Ecology & Evolution.

[84]  A. Correa,et al.  Fish predation on corals promotes the dispersal of coral symbionts , 2020, Animal Microbiome.

[85]  J. Locascio,et al.  Two decades of little change: An analysis of U.S. medical school basic science faculty by sex, race/ethnicity, and academic rank , 2020, PloS one.

[86]  D. Barshis,et al.  Standardized short‐term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites , 2020, Global change biology.

[87]  D. Bhattacharya,et al.  Sex in Symbiodiniaceae dinoflagellates: genomic evidence for independent loss of the canonical synaptonemal complex , 2020, Scientific Reports.

[88]  J. Wong,et al.  Competitive traits of coral symbionts may alter the structure and function of the microbiome , 2020, The ISME Journal.

[89]  J. Burt,et al.  Low Symbiodiniaceae diversity in a turbid marginal reef environment , 2020, Coral Reefs.

[90]  W. E. Browne,et al.  Fluorescence-Activated Cell Sorting for the Isolation of Scleractinian Cell Populations. , 2020, Journal of visualized experiments : JoVE.

[91]  Senjie Lin,et al.  Genome Size, rDNA Copy, and qPCR Assays for Symbiodiniaceae , 2020, Frontiers in Microbiology.

[92]  S. Lax,et al.  Uncovering the role of Symbiodiniaceae assemblage composition and abundance in coral bleaching response by minimizing sampling and evolutionary biases , 2020, BMC Microbiology.

[93]  G. Cochrane,et al.  Tara Oceans: towards global ocean ecosystems biology , 2020, Nature Reviews Microbiology.

[94]  M. Studivan,et al.  Depth Influences Symbiodiniaceae Associations Among Montastraea cavernosa Corals on the Belize Barrier Reef , 2020, Frontiers in Microbiology.

[95]  Jörg C. Frommlet,et al.  Description of Freudenthalidium gen. nov. and Halluxium gen. nov. to formally recognize clades Fr3 and H as genera in the family Symbiodiniaceae (Dinophyceae). , 2020, Journal of phycology.

[96]  David S. Booth,et al.  Genetic tool development in marine protists: emerging model organisms for experimental cell biology , 2020, Nature Methods.

[97]  M. Berumen,et al.  Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations , 2020, Coral Reefs.

[98]  R. Gates,et al.  Chronic disturbance modulates symbiont (Symbiodiniaceae) beta diversity on a coral reef , 2020, Scientific Reports.

[99]  V. Weis,et al.  Host and Symbiont Cell Cycle Coordination Is Mediated by Symbiotic State, Nutrition, and Partner Identity in a Model Cnidarian-Dinoflagellate Symbiosis , 2020, mBio.

[100]  T. Ho,et al.  Endosymbiotic dinoflagellates pump iron: differences in iron and other trace metal needs among the Symbiodiniaceae , 2020, Coral Reefs.

[101]  Leilani A. Walker,et al.  The Pakaru ‘Pipeline’: Māori and Pasifika Pathways within the Academy , 2020, The New Zealand Annual Review of Education.

[102]  N. Satoh,et al.  Correlation between Organelle Genetic Variation and RNA Editing in Dinoflagellates Associated with the Coral Acropora digitifera , 2020, Genome biology and evolution.

[103]  David J. Miller,et al.  An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn corals (Acroporidae) and close relatives , 2020, bioRxiv.

[104]  A. Correa,et al.  Symbiont community diversity is more variable in corals that respond poorly to stress , 2020, Global change biology.

[105]  H. Bart,et al.  Why are there so few ethnic minorities in ecology and evolutionary biology? Challenges to inclusion and the role of sense of belonging , 2020 .

[106]  J. Reimer,et al.  Comparison of Symbiodiniaceae diversities in different members of a Palythoa species complex (Cnidaria: Anthozoa: Zoantharia)—implications for ecological adaptations to different microhabitats , 2020, PeerJ.

[107]  E. Howells,et al.  Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility , 2020, Molecular ecology.

[108]  Lisa Fujise,et al.  Revealing changes in the microbiome of Symbiodiniaceae under thermal stress. , 2020, Environmental microbiology.

[109]  Huan Zhu,et al.  Taxonomic scheme of the order Chaetophorales (Chlorophyceae, Chlorophyta) based on chloroplast genomes , 2020, BMC Genomics.

[110]  W. Miller,et al.  STAGdb: a 30K SNP genotyping array and Science Gateway for Acropora corals and their dinoflagellate symbionts , 2020, Scientific Reports.

[111]  M. V. van Oppen,et al.  Symbiodiniaceae-bacteria interactions: rethinking metabolite exchange in reef-building corals as multi-partner metabolic networks. , 2020, Environmental microbiology.

[112]  J. Reimer,et al.  Unique combinations of coral host and algal symbiont genotypes reflect intraspecific variation in heat stress responses among colonies of the reef-building coral, Montipora digitata , 2020 .

[113]  Senjie Lin,et al.  Genome Improvement and Core Gene Set Refinement of Fugacium kawagutii , 2020, Microorganisms.

[114]  A. Wysong,et al.  The proportion of male and female editors in women’s health journals: A critical analysis and review of the sex gap,☆ , 2019, International journal of women's dermatology.

[115]  Daniel A. McFarland,et al.  The Diversity–Innovation Paradox in Science , 2019, Proceedings of the National Academy of Sciences.

[116]  Albert-László Barabási,et al.  Historical comparison of gender inequality in scientific careers across countries and disciplines , 2019, Proceedings of the National Academy of Sciences.

[117]  Jessica F. Saunders,et al.  How Gender and Race Stereotypes Impact the Advancement of Scholars in STEM: Professors’ Biased Evaluations of Physics and Biology Post-Doctoral Candidates , 2020, Sex Roles.

[118]  N. Silbiger,et al.  Unprofessional peer reviews disproportionately harm underrepresented groups in STEM , 2019, PeerJ.

[119]  Timothy G. Stephens,et al.  Evidence That Inconsistent Gene Prediction Can Mislead Analysis of Dinoflagellate Genomes , 2019, Journal of phycology.

[120]  Anny Cárdenas,et al.  Protocol for the generation of axenic/bacteria-depleted Symbiodiniaceae cultures v1 , 2019, protocols.io.

[121]  C. Fox,et al.  Gender diversity of editorial boards and gender differences in the peer review process at six journals of ecology and evolution , 2019, Ecology and Evolution.

[122]  J. Steitz,et al.  Increasing gender diversity in the STEM research workforce , 2019, Science.

[123]  M. Rodriguez-Lanetty,et al.  Free‐living and symbiotic lifestyles of a thermotolerant coral endosymbiont display profoundly distinct transcriptomes under both stable and heat stress conditions , 2019, Molecular ecology.

[124]  J. Seymour,et al.  Coral endosymbionts (Symbiodiniaceae) emit species-specific volatilomes that shift when exposed to thermal stress , 2019, Scientific Reports.

[125]  R. Cunning,et al.  Competition and succession among coral endosymbionts , 2019, Ecology and evolution.

[126]  Michael S. Lauer,et al.  Topic choice contributes to the lower rate of NIH awards to African-American/black scientists , 2019, Science Advances.

[127]  S. Majeed,et al.  Gender distribution in psychiatry journals' editorial boards worldwide. , 2019, Comprehensive psychiatry.

[128]  P. Cardol,et al.  Photosynthetic capacity of the endosymbiotic dinoflagellate Cladocopium sp. is preserved during digestion of its jellyfish host Mastigias papua by the anemone Entacmaea medusivora , 2019, FEMS microbiology ecology.

[129]  M. Ragan,et al.  Genome Evolution of Coral Reef Symbionts as Intracellular Residents. , 2019, Trends in ecology & evolution.

[130]  Z. Forsman,et al.  Environmental latitudinal gradients and host‐specificity shape Symbiodiniaceae distribution in Red Sea Porites corals , 2019, Journal of Biogeography.

[131]  Kenneth D. Hoadley,et al.  Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress , 2019, Scientific Reports.

[132]  I. Baums,et al.  What drives phenotypic divergence among coral clonemates of Acropora palmata? , 2019, Molecular ecology.

[133]  Danwei Huang,et al.  Diversity of endosymbiotic Symbiodiniaceae in giant clams at Dongsha Atoll, northern South China Sea , 2019, Symbiosis.

[134]  Shaun P. Wilkinson,et al.  Inter-partner specificity limits the acquisition of thermotolerant symbionts in a model cnidarian-dinoflagellate symbiosis , 2019, The ISME Journal.

[135]  Arturo Casadevall,et al.  Reducing bias: accounting for the order of co-first authors. , 2019, The Journal of clinical investigation.

[136]  M. Matz,et al.  Recruit symbiosis establishment and Symbiodiniaceae composition influenced by adult corals and reef sediment , 2019, Coral Reefs.

[137]  A. Grossman,et al.  Proteomics quantifies protein expression changes in a model cnidarian colonised by a thermally tolerant but suboptimal symbiont , 2019, The ISME Journal.

[138]  L. Rieseberg,et al.  Some perspective on Molecular Ecology perspectives: Are women being left out? , 2019, Molecular ecology.

[139]  Hugh J. M. Warrington,et al.  SymPortal: A novel analytical framework and platform for coral algal symbiont next‐generation sequencing ITS2 profiling , 2019, Molecular ecology resources.

[140]  A. Marchetti,et al.  Estimation of 18S Gene Copy Number in Marine Eukaryotic Plankton Using a Next-Generation Sequencing Approach , 2019, Front. Mar. Sci..

[141]  M. V. van Oppen,et al.  Relative stability of the Pocillopora acuta microbiome throughout a thermal stress event , 2019, Coral Reefs.

[142]  A. Banaszak,et al.  Genetic relationships of the hydrocoral Millepora alcicornis and its symbionts within and between locations across the Atlantic , 2019, Coral Reefs.

[143]  Shaun P. Wilkinson,et al.  Multi-gene incongruence consistent with hybridisation in Cladocopium (Symbiodiniaceae), an ecologically important genus of coral reef symbionts , 2019, PeerJ.

[144]  M. Kanke,et al.  Cladocopium community divergence in two Acropora coral hosts across multiple spatial scales , 2019, bioRxiv.

[145]  Arturo Casadevall,et al.  Gender inequalities among authors who contributed equally , 2019, eLife.

[146]  M. Rodriguez-Lanetty,et al.  Recurring Episodes of Thermal Stress Shift the Balance From a Dominant Host-Specialist to a Background Host-Generalist Zooxanthella in the Threatened Pillar Coral, Dendrogyra cylindrus , 2019, Front. Mar. Sci..

[147]  E. Lundberg,et al.  Spatial proteomics: a powerful discovery tool for cell biology , 2019, Nature Reviews Molecular Cell Biology.

[148]  Oliver M. Crook,et al.  Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics , 2019, Nature Communications.

[149]  M. Matz,et al.  Role of host genetics and heat‐tolerant algal symbionts in sustaining populations of the endangered coral Orbicella faveolata in the Florida Keys with ocean warming , 2019, Global change biology.

[150]  X. Pochon,et al.  Towards an in-depth characterization of Symbiodiniaceae in tropical giant clams via metabarcoding of pooled multi-gene amplicons , 2019, PeerJ.

[151]  T. Lajeunesse,et al.  New Species of Closely Related Endosymbiotic Dinoflagellates in the Greater Caribbean have Niches Corresponding to Host Coral Phylogeny , 2018, The Journal of eukaryotic microbiology.

[152]  T. Goulet,et al.  Symbiodiniaceae Genetic Diversity and Symbioses with Hosts from Shallow to Mesophotic Coral Ecosystems , 2019, Coral Reefs of the World.

[153]  Mosè Manni,et al.  BUSCO: Assessing Genome Assembly and Annotation Completeness. , 2019, Methods in molecular biology.

[154]  Senjie Lin,et al.  Initial evidence of functional siRNA machinery in dinoflagellates. , 2019, Harmful algae.

[155]  M. Matz,et al.  Role of gene body methylation in acclimatization and adaptation in a basal metazoan , 2018, Proceedings of the National Academy of Sciences.

[156]  J. Ausió,et al.  Coral epigenetic responses to nutrient stress: Histone H2A.X phosphorylation dynamics and DNA methylation in the staghorn coral Acropora cervicornis , 2018, Ecology and evolution.

[157]  Zhiyong Li,et al.  Genotype and Phylogenetic Diversity of Symbiodinium ITS2 Sequences Within Clade C in Three Typical Coral Species from Luhuitou Fringing Reef of the South China Sea , 2018, Journal of Ocean University of China.

[158]  Timothy G. Stephens,et al.  Core genes in diverse dinoflagellate lineages include a wealth of conserved dark genes with unknown functions , 2018, Scientific Reports.

[159]  L. Schiebinger,et al.  Making gender diversity work for scientific discovery and innovation , 2018, Nature Human Behaviour.

[160]  J. Reimer,et al.  Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts , 2018, Current Biology.

[161]  Timothy G. Stephens,et al.  Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis , 2018, Communications Biology.

[162]  M. Medina,et al.  Intra- and interspecific variation and phenotypic plasticity in thylakoid membrane properties across two Symbiodinium clades , 2018, Coral Reefs.

[163]  P. Ralph,et al.  Cell Cycle Dynamics of Cultured Coral Endosymbiotic Microalgae (Symbiodinium) Across Different Types (Species) Under Alternate Light and Temperature Conditions , 2018, The Journal of eukaryotic microbiology.

[164]  P. Bongaerts,et al.  Adaptation to reef habitats through selection on the coral animal and its associated microbiome , 2018, Molecular ecology.

[165]  M. Kawachi,et al.  Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes , 2018, BMC genomics.

[166]  Tingting Xiang Isolation of axenic Symbiodinium cultures v1 (protocols.io.qxzdxp6) , 2018, protocols.io.

[167]  Patrick Wincker,et al.  An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region , 2018, PeerJ.

[168]  J. Reimer,et al.  Phylogenetic analyses of Symbiodinium isolated from Waminoa and their anthozoan hosts in the Ryukyu Archipelago, southern Japan , 2018, Symbiosis.

[169]  A. Marchetti,et al.  Symbiodinium Functional Diversity in the Coral Siderastrea siderea Is Influenced by Thermal Stress and Reef Environment, but Not Ocean Acidification , 2018, Front. Mar. Sci..

[170]  R. Lister,et al.  Recurrent acquisition of cytosine methyltransferases into eukaryotic retrotransposons , 2018, Nature Communications.

[171]  Jennifer S Leigh,et al.  Ableism in academia: where are the disabled and ill academics? , 2018 .

[172]  M. Aranda,et al.  Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts , 2018, Proceedings of the Royal Society B: Biological Sciences.

[173]  R. Gates,et al.  Coral color and depth drive symbiosis ecology of Montipora capitata in Kāne‘ohe Bay, O‘ahu, Hawai‘i , 2018, Coral Reefs.

[174]  J. Seymour,et al.  Defining the core microbiome of the symbiotic dinoflagellate, Symbiodinium , 2018, Environmental microbiology reports.

[175]  L. Tedersoo,et al.  PacBio metabarcoding of Fungi and other eukaryotes: errors, biases and perspectives. , 2018, The New phytologist.

[176]  Ludivine A. Thomas,et al.  Evidence for miRNA‐mediated modulation of the host transcriptome in cnidarian–dinoflagellate symbiosis , 2018, Molecular ecology.

[177]  V. Eguíluz,et al.  Rare symbionts may contribute to the resilience of coral–algal assemblages , 2017, The ISME Journal.

[178]  E. S. Deutekom,et al.  Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral , 2017, Science Advances.

[179]  B. Montgomery From Deficits to Possibilites: Mentoring Lessons from Plants on Cultivating Individual Growth through Environmental Assessment and Optimization , 2018, Public Philosophy Journal.

[180]  R. Cunning,et al.  Symbiont shuffling linked to differential photochemical dynamics of Symbiodinium in three Caribbean reef corals , 2018, Coral Reefs.

[181]  B. Willis,et al.  Temperature and Water Quality-Related Patterns in Sediment-Associated Symbiodinium Communities Impact Symbiont Uptake and Fitness of Juveniles in the Genus Acropora , 2017, Front. Mar. Sci..

[182]  A. Ohdera,et al.  Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates , 2017, Proceedings of the Royal Society B: Biological Sciences.

[183]  T. Ainsworth,et al.  The Other Microeukaryotes of the Coral Reef Microbiome. , 2017, Trends in microbiology.

[184]  F. Archer,et al.  Comparative growth rates of cultured marine dinoflagellates in the genus Symbiodinium and the effects of temperature and light , 2017, PloS one.

[185]  U. Roessner,et al.  Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis , 2017, Proceedings of the National Academy of Sciences.

[186]  H. H. Bruun,et al.  Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates , 2017, Nature Communications.

[187]  M. Shokri,et al.  Symbiodinium thermophilum symbionts in Porites harrisoni and Cyphastrea microphthalma in the northern Persian Gulf, Iran , 2017, Journal of the Marine Biological Association of the United Kingdom.

[188]  J. Reimer,et al.  A preliminary survey of zoantharian endosymbionts shows high genetic variation over small geographic scales on Okinawa-jima Island, Japan , 2017, PeerJ.

[189]  T. Lajeunesse Validation and description of Symbiodinium microadriaticum, the type species of Symbiodinium (Dinophyta) , 2017, Journal of phycology.

[190]  D. Thornhill,et al.  Sibling species of mutualistic Symbiodinium clade G from bioeroding sponges in the western Pacific and western Atlantic oceans , 2017, Journal of phycology.

[191]  D. Suggett,et al.  Symbiotic Dinoflagellate Functional Diversity Mediates Coral Survival under Ecological Crisis. , 2017, Trends in ecology & evolution.

[192]  T. Ravasi,et al.  Rapid adaptive responses to climate change in corals , 2017 .

[193]  Jesse R. Zaneveld,et al.  Stress and stability: applying the Anna Karenina principle to animal microbiomes , 2017, Nature Microbiology.

[194]  R. Gates,et al.  Using high-throughput sequencing of ITS2 to describe Symbiodinium metacommunities in St. John, US Virgin Islands , 2017, PeerJ.

[195]  M. Scheffer,et al.  Coral reefs in the Anthropocene , 2017, Nature.

[196]  Ning Jiang,et al.  Our path to better science in less time using open data science tools , 2017, Nature Ecology &Evolution.

[197]  A. Barbrook,et al.  The genetic intractability of Symbiodinium microadriaticum to standard algal transformation methods , 2017, bioRxiv.

[198]  M. Hellberg,et al.  Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes , 2017, Coral Reefs.

[199]  Kim-Anh Lê Cao,et al.  mixOmics: An R package for ‘omics feature selection and multiple data integration , 2017, bioRxiv.

[200]  E. Howells,et al.  Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae) , 2017, Molecular ecology.

[201]  A. Thurber,et al.  Virus–host interactions and their roles in coral reef health and disease , 2017, Nature Reviews Microbiology.

[202]  B. Montgomery Mapping a Mentoring Roadmap and Developing a Supportive Network for Strategic Career Advancement , 2017 .

[203]  G. Ning,et al.  Symbiodinium glynnii sp. nov., a species of stress-tolerant symbiotic dinoflagellates from pocilloporid and montiporid corals in the Pacific Ocean , 2017 .

[204]  U. Karsten,et al.  Photophysiological and thermal tolerance of various genotypes of the coral endosymbiont Symbiodinium sp. (Dinophyceae) , 2017, Journal of Applied Phycology.

[205]  Edward G. Smith,et al.  Host specificity of Symbiodinium variants revealed by an ITS2 metahaplotype approach , 2017, The ISME Journal.

[206]  P. Ralph,et al.  A molecular physiology basis for functional diversity of hydrogen peroxide production amongst Symbiodinium spp. (Dinophyceae) , 2017 .

[207]  S. Palumbi,et al.  Bacterial community dynamics are linked to patterns of coral heat tolerance , 2017, Nature Communications.

[208]  T. Goulet,et al.  The effects of elevated seawater temperatures on Caribbean gorgonian corals and their algal symbionts, Symbiodinium spp. , 2017, PloS one.

[209]  Manuel Aranda,et al.  Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum , 2017, PLoS genetics.

[210]  R. Gates,et al.  Defining the Core Microbiome in Corals' Microbial Soup. , 2017, Trends in microbiology.

[211]  B. Willis,et al.  Heritability of the Symbiodinium community in vertically- and horizontally-transmitting broadcast spawning corals , 2017, Scientific Reports.

[212]  M. Oppen,et al.  Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts , 2016, The ISME Journal.

[213]  Anna D. Muncy,et al.  Author‐suggested reviewers: gender differences and influences on the peer review process at an ecology journal , 2017 .

[214]  J. Reimer,et al.  Latitudinal variation in the symbiotic dinoflagellate Symbiodinium of the common reef zoantharian Palythoa tuberculosa on the Saudi Arabian coast of the Red Sea , 2017 .

[215]  M. D. Di Bitetti,et al.  Publish (in English) or perish: The effect on citation rate of using languages other than English in scientific publications , 2017, Ambio.

[216]  S. Baumgarten,et al.  Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle , 2016, Scientific Reports.

[217]  M. Warner,et al.  Temperature moderates the infectiousness of two conspecific Symbiodinium strains isolated from the same host population. , 2016, Environmental microbiology.

[218]  B. Willis,et al.  Maternal effects and Symbiodinium community composition drive differential patterns in juvenile survival in the coral Acropora tenuis , 2016, Royal Society Open Science.

[219]  D. Bourne,et al.  Insights into the Coral Microbiome: Underpinning the Health and Resilience of Reef Ecosystems. , 2016, Annual review of microbiology.

[220]  D. Hawksworth,et al.  (346–361) Miscellaneous proposals aimed at enhancing or clarifying aspects of the International Code of Nomenclature for algae, fungi, and plants , 2016 .

[221]  R. Gates,et al.  Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals , 2016, Evolutionary applications.

[222]  S. Egan,et al.  Microbial Dysbiosis: Rethinking Disease in Marine Ecosystems , 2016, Front. Microbiol..

[223]  R. Berkelmans,et al.  Recovery from bleaching is mediated by threshold densities of background thermo-tolerant symbiont types in a reef-building coral , 2016, Royal Society Open Science.

[224]  B. Willis,et al.  Microsatellite allele sizes alone are insufficient to delineate species boundaries in Symbiodinium , 2016, Molecular ecology.

[225]  H. Wirshing,et al.  On the difficulty of recognizing distinct Symbiodinium species in mixed communities of algal symbionts , 2016, Molecular ecology.

[226]  T. Lajeunesse,et al.  Symbiodinium population genetics: testing for species boundaries and analysing samples with mixed genotypes , 2016, Molecular ecology.

[227]  P. Harrison,et al.  Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals , 2016, The ISME Journal.

[228]  Daniel S Falster,et al.  The Coral Trait Database, a curated database of trait information for coral species from the global oceans , 2016, Scientific Data.

[229]  I. Baums,et al.  Gene Expression Variation Resolves Species and Individual Strains among Coral-Associated Dinoflagellates within the Genus Symbiodinium , 2016, Genome biology and evolution.

[230]  D. Richter,et al.  The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying ciliate (Tiarina sp.) , 2015, The ISME Journal.

[231]  K. Koike,et al.  Motility and cell division patterns among several strains of Symbiodinium , 2016 .

[232]  Alexander Schwartz,et al.  Systematics And The Origin Of Species , 2016 .

[233]  S. Ward,et al.  Horizontal transmission of Symbiodinium cells between adult and juvenile corals is aided by benthic sediment , 2016, Coral Reefs.

[234]  A. Grajales,et al.  Patterns of Symbiodinium spp. associations within the family Aiptasiidae, a monophyletic lineage of symbiotic of sea anemones (Cnidaria, Actiniaria) , 2016, Coral Reefs.

[235]  H. Jeong,et al.  Most Low-Abundance “Background” Symbiodinium spp. Are Transitory and Have Minimal Functional Significance for Symbiotic Corals , 2016, Microbial Ecology.

[236]  R. Gates,et al.  Variability of Symbiodinium Communities in Waters, Sediments, and Corals of Thermally Distinct Reef Pools in American Samoa , 2015, PloS one.

[237]  Y. Suyama,et al.  MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform , 2015, Scientific Reports.

[238]  Huanming Yang,et al.  The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis , 2015, Science.

[239]  P. Ralph,et al.  Functional diversity of photobiological traits within the genus Symbiodinium appears to be governed by the interaction of cell size with cladal designation. , 2015, The New phytologist.

[240]  J. E. Parkinson,et al.  New species of Clade B Symbiodinium (Dinophyceae) from the greater Caribbean belong to different functional guilds: S. aenigmaticum sp. nov., S. antillogorgium sp. nov., S. endomadracis sp. nov., and S. pseudominutum sp. nov. , 2015, Journal of phycology.

[241]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[242]  A. Kelleher,et al.  Post-transcriptional gene silencing, transcriptional gene silencing and human immunodeficiency virus. , 2015, World journal of virology.

[243]  C. Voolstra,et al.  Niche acclimatization in Red Sea corals is dependent on flexibility of host-symbiont association , 2015 .

[244]  R. Gates,et al.  Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions , 2015, The Journal of Experimental Biology.

[245]  Roberto Iglesias-Prieto,et al.  Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella , 2015, Proceedings of the National Academy of Sciences.

[246]  J. Neigel,et al.  Genetic diversity of free-living Symbiodinium in the Caribbean: the importance of habitats and seasons , 2015, Coral Reefs.

[247]  Jörg C. Frommlet,et al.  Coral symbiotic algae calcify ex hospite in partnership with bacteria , 2015, Proceedings of the National Academy of Sciences.

[248]  N. Knowlton,et al.  Symbiodinium necroappetens sp. nov. (Dinophyceae): an opportunist ‘zooxanthella’ found in bleached and diseased tissues of Caribbean reef corals , 2015 .

[249]  Tae Young Jang,et al.  Symbiodinium tridacnidorum sp. nov., a dinoflagellate common to Indo-Pacific giant clams, and a revised morphological description of Symbiodinium microadriaticum Freudenthal, emended Trench & Blank , 2015 .

[250]  J. Wiedenmann,et al.  Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf , 2015, Scientific Reports.

[251]  M. Teece,et al.  Taxonomic and Environmental Variation of Metabolite Profiles in Marine Dinoflagellates of the Genus Symbiodinium , 2015, Metabolites.

[252]  J. Coon,et al.  Proteome sequencing goes deep. , 2015, Current opinion in chemical biology.

[253]  P. Kareiva,et al.  The Importance of Species , 2015 .

[254]  M. Gordin,et al.  Scientific Babel: How Science Was Done Before and After Global English , 2015 .

[255]  M. Matz,et al.  Bimodal signatures of germline methylation are linked with gene expression plasticity in the coral Acropora millepora , 2014, BMC Genomics.

[256]  I. Carbone,et al.  Challenges in analysis and interpretation of microsatellite data for population genetic studies , 2014, Ecology and evolution.

[257]  B. Montgomery,et al.  Guiding the Way , 2014 .

[258]  T. Goulet,et al.  Symbiodinium Photosynthesis in Caribbean Octocorals , 2014, PloS one.

[259]  I. Baums,et al.  New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. , 2014, Molecular ecology.

[260]  I. Baums,et al.  The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral–algal associations , 2014, Front. Microbiol..

[261]  A. Barbrook,et al.  Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region , 2014, Molecular ecology.

[262]  M. Hellberg,et al.  Cryptic diversity hides host and habitat specialization in a gorgonian‐algal symbiosis , 2014, Molecular ecology.

[263]  Todd C. LaJeunesse,et al.  Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species , 2014 .

[264]  T. Oliver,et al.  Lineage-specific transcriptional profiles of Symbiodinium spp. unaltered by heat stress in a coral host. , 2014, Molecular biology and evolution.

[265]  N. Satoh,et al.  Massive Gene Transfer and Extensive RNA Editing of a Symbiotic Dinoflagellate Plastid Genome , 2014, Genome biology and evolution.

[266]  X. Pochon,et al.  Distributed under Creative Commons Cc-by 4.0 Multi-gene Analysis of Symbiodinium Dinoflagellates: a Perspective on Rarity, Symbiosis, and Evolution , 2022 .

[267]  M. Matz,et al.  Quantifying cryptic Symbiodinium diversity within Orbicella faveolata and Orbicella franksi at the Flower Garden Banks, Gulf of Mexico , 2014, PeerJ.

[268]  B. Willis,et al.  Deep-Sequencing Method for Quantifying Background Abundances of Symbiodinium Types: Exploring the Rare Symbiodinium Biosphere in Reef-Building Corals , 2014, PloS one.

[269]  F. Leliaert,et al.  DNA-based species delimitation in algae , 2014 .

[270]  P. Ralph,et al.  Lateral light transfer ensures efficient resource distribution in symbiont-bearing corals , 2014, Journal of Experimental Biology.

[271]  D. Thornhill,et al.  HOST‐SPECIALIST LINEAGES DOMINATE THE ADAPTIVE RADIATION OF REEF CORAL ENDOSYMBIONTS , 2014, Evolution; international journal of organic evolution.

[272]  H. Jeong,et al.  Genetics and Morphology Characterize the Dinoflagellate Symbiodinium voratum, n. sp., (Dinophyceae) as the Sole Representative of Symbiodinium Clade E , 2014, The Journal of eukaryotic microbiology.

[273]  M. Sweet Symbiodinium diversity within Acropora muricata and the surrounding environment , 2014 .

[274]  Margaux Carmichael,et al.  Microsatellite loci for Symbiodinium goreaui and other Clade C Symbiodinium , 2014, Conservation Genetics Resources.

[275]  J. Geller,et al.  FISH-Flow: a quantitative molecular approach for describing mixed clade communities of Symbiodinium , 2014, Coral Reefs.

[276]  A. Banaszak,et al.  The symbiosis between the gastropod Strombus gigas and the dinoflagellate Symbiodinium: An ontogenic journey from mutualism to parasitism , 2013 .

[277]  H. Wirshing,et al.  Vectored dispersal of Symbiodinium by larvae of a Caribbean gorgonian octocoral , 2013, Molecular ecology.

[278]  S. Sugano,et al.  Draft Assembly of the Symbiodinium minutum Nuclear Genome Reveals Dinoflagellate Gene Structure , 2013, Current Biology.

[279]  B. Willis,et al.  Spatial and temporal genetic structure of Symbiodinium populations within a common reef‐building coral on the Great Barrier Reef , 2013, Molecular ecology.

[280]  A. Grossman,et al.  Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity1 , 2013, Journal of phycology.

[281]  B. Willis,et al.  Historical thermal regimes define limits to coral acclimatization. , 2013, Ecology.

[282]  V. Backman,et al.  Modulation of Light-Enhancement to Symbiotic Algae by Light-Scattering in Corals and Evolutionary Trends in Bleaching , 2013, PloS one.

[283]  P. Glynn,et al.  Flexible associations between Pocillopora corals and Symbiodinium limit utility of symbiosis ecology in defining species , 2013, Coral Reefs.

[284]  R. Cunning,et al.  Excess algal symbionts increase the susceptibility of reef corals to bleaching , 2013 .

[285]  K. Koike,et al.  Genetic identity of free‐living Symbiodinium obtained over a broad latitudinal range in the Japanese coast , 2013 .

[286]  D. Thornhill,et al.  A simple temperature-based model predicts the upper latitudinal limit of the temperate coral Astrangia poculata , 2013, Coral Reefs.

[287]  M. Matz,et al.  Novel polymorphic microsatellite markers for population genetics of the endangered Caribbean star coral, Montastraea faveolata , 2013, Marine Biodiversity.

[288]  A. Baird,et al.  The promiscuous larvae: flexibility in the establishment of symbiosis in corals , 2013, Coral Reefs.

[289]  J. Wiedenmann,et al.  Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae , 2013, Coral Reefs.

[290]  J. Reimer,et al.  A genetics‐based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (Dinophyceae), two dinoflagellates symbiotic with cnidaria , 2012, Journal of phycology.

[291]  S. Palumbi,et al.  Protein evolution in two co-occurring types of Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodinium clade D , 2012, BMC Evolutionary Biology.

[292]  T. Burg,et al.  Sampling for Microsatellite-Based Population Genetic Studies: 25 to 30 Individuals per Population Is Enough to Accurately Estimate Allele Frequencies , 2012, PloS one.

[293]  P. Ralph,et al.  Light gradients and optical microniches in coral tissues , 2012, Front. Microbio..

[294]  A. Correa,et al.  Specificity is rarely absolute in coral–algal symbiosis: implications for coral response to climate change , 2012, Proceedings of the Royal Society B: Biological Sciences.

[295]  E. Achterberg,et al.  Erratum: Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae) , 2012 .

[296]  B. Bingham,et al.  Thicker host tissues moderate light stress in a cnidarian endosymbiont , 2012, Journal of Experimental Biology.

[297]  D. Allemand,et al.  Cell Biology of Cnidarian-Dinoflagellate Symbiosis , 2012, Microbiology and Molecular Reviews.

[298]  S. Sunagawa,et al.  Symbiodinium Transcriptomes: Genome Insights into the Dinoflagellate Symbionts of Reef-Building Corals , 2012, PloS one.

[299]  G. Robinson,et al.  DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees , 2012, Proceedings of the National Academy of Sciences.

[300]  Y. Yamashita,et al.  Symbiodinium Clade C Dominates Zooxanthellate Corals (Scleractinia) in the Temperate Region of Japan , 2012, Zoological science.

[301]  R. Gates,et al.  Cultivating endosymbionts — Host environmental mimics support the survival of Symbiodinium C15 ex hospite , 2012 .

[302]  B. Willis,et al.  Coral thermal tolerance shaped by local adaptation of photosymbionts , 2012 .

[303]  M. Fraga,et al.  Epigenetics and the environment: emerging patterns and implications , 2012, Nature Reviews Genetics.

[304]  X. Pochon,et al.  Identifying and Characterizing Alternative Molecular Markers for the Symbiotic and Free-Living Dinoflagellate Genus Symbiodinium , 2012, PloS one.

[305]  X. Pochon,et al.  Molecular delineation of species in the coral holobiont. , 2012, Advances in marine biology.

[306]  C. Castro‐Sanguino,et al.  Dispersal of Symbiodinium by the stoplight parrotfish Sparisoma viride , 2012, Biology Letters.

[307]  X. Pochon,et al.  Genetic diversity of free-living Symbiodinium in surface water and sediment of Hawai‘i and Florida , 2012, Coral Reefs.

[308]  D. Thornhill,et al.  Improved Resolution of Reef-Coral Endosymbiont (Symbiodinium) Species Diversity, Ecology, and Evolution through psbA Non-Coding Region Genotyping , 2011, PloS one.

[309]  Laurel L. Haak,et al.  Race, Ethnicity, and NIH Research Awards , 2011, Science.

[310]  Senjie Lin Genomic understanding of dinoflagellates. , 2011, Research in microbiology.

[311]  J. Andras,et al.  Range‐wide population genetic structure of Symbiodinium associated with the Caribbean Sea fan coral, Gorgonia ventalina , 2011, Molecular ecology.

[312]  E. Achterberg,et al.  Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae) , 2011 .

[313]  A. Hill,et al.  Symbiodinium diversity among host clionaid sponges from Caribbean and Pacific reefs: Evidence of heteroplasmy and putative host-specific symbiont lineages. , 2011, Molecular phylogenetics and evolution.

[314]  T. Lajeunesse,et al.  Microsatellite loci for the host-generalist “zooxanthella” Symbiodinium trenchi and other Clade D Symbiodinium , 2011, Conservation Genetics Resources.

[315]  A. Correa,et al.  Novel algal symbiont (Symbiodinium spp.) diversity in reef corals of Western Australia , 2011 .

[316]  E. Kiers,et al.  The biological reality of host sanctions and partner fidelity , 2011, Proceedings of the National Academy of Sciences.

[317]  J. Ragle,et al.  IUCN Red List of Threatened Species , 2010 .

[318]  T. Lajeunesse,et al.  Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance , 2010, Proceedings of the Royal Society B: Biological Sciences.

[319]  D. Brazeau,et al.  Environmental Symbiont Acquisition May Not Be the Solution to Warming Seas for Reef-Building Corals , 2010, PloS one.

[320]  O. Hoegh‐Guldberg,et al.  Presence of Symbiodinium spp. in macroalgal microhabitats from the southern Great Barrier Reef , 2010, Coral Reefs.

[321]  M. Miller,et al.  Host population genetic structure and zooxanthellae diversity of two reef-building coral species along the Florida Reef Tract and wider Caribbean , 2010, Coral Reefs.

[322]  J. Reimer,et al.  Preliminary analyses of cultured Symbiodinium isolated from sand in the oceanic Ogasawara Islands, Japan , 2010, Marine Biodiversity.

[323]  E. Sampayo,et al.  The Relative Significance of Host–Habitat, Depth, and Geography on the Ecology, Endemism, and Speciation of Coral Endosymbionts in the Genus Symbiodinium , 2010, Microbial Ecology.

[324]  Todd C. LaJeunesse,et al.  Long‐standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium , 2010 .

[325]  X. Pochon,et al.  COMPARISON OF ENDOSYMBIOTIC AND FREE‐LIVING SYMBIODINIUM (DINOPHYCEAE) DIVERSITY IN A HAWAIIAN REEF ENVIRONMENT 1 , 2010 .

[326]  Dan G. Bock,et al.  Permanent Genetic Resources added to Molecular Ecology Resources Database 1 August 2009–30 September 2009 , 2010, Molecular ecology resources.

[327]  R. Gates,et al.  Coral-virus interactions: A double-edged sword? , 2010, Symbiosis.

[328]  I. Baums,et al.  Microsatellite loci for Symbiodinium A3 (S. fitti) a common algal symbiont among Caribbean Acropora (stony corals) and Indo-Pacific giant clams (Tridacna) , 2010, Conservation Genetics Resources.

[329]  Allan Konopka,et al.  What is microbial community ecology? , 2009, The ISME Journal.

[330]  A. Correa,et al.  Development of clade-specific Symbiodinium primers for quantitative PCR (qPCR) and their application to detecting clade D symbionts in Caribbean corals , 2009 .

[331]  M. Oppen,et al.  Isolation, characterisation and cross amplification of thirteen microsatellite loci for coral endo-symbiotic dinoflagellates (Symbiodinium clade C) , 2009, Conservation Genetics Resources.

[332]  W. Fitt,et al.  Reef Endemism, Host Specificity and Temporal Stability in Populations of Symbiotic Dinoflagellates from Two Ecologically Dominant Caribbean Corals , 2009, PloS one.

[333]  S. Sunagawa,et al.  Evolutionary analysis of orthologous cDNA sequences from cultured and symbiotic dinoflagellate symbionts of reef-building corals (Dinophyceae: Symbiodinium). , 2009, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[334]  T. Lajeunesse,et al.  Microsatellite loci for assessing genetic diversity, dispersal and clonality of coral symbionts in ‘stress‐tolerant’ clade D Symbiodinium , 2009, Molecular ecology resources.

[335]  C. D. Harvell,et al.  Isolation and characterization of microsatellite loci in Symbiodinium B1/B184, the dinoflagellate symbiont of the Caribbean sea fan coral, Gorgonia ventalina , 2009, Molecular ecology resources.

[336]  C. D. Harvell,et al.  Population structure of Symbiodinium sp. associated with the common sea fan, Gorgonia ventalina, in the Florida Keys across distance, depth, and time , 2009 .

[337]  N. Gemmell,et al.  Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. , 2009, BioTechniques.

[338]  M. Takabayashi,et al.  Exposure to sediment enhances primary acquisition of Symbiodinium by asymbiotic coral larvae , 2009 .

[339]  R. Geider,et al.  Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state , 2009 .

[340]  E. Sampayo,et al.  Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium , 2009, Molecular ecology.

[341]  T. Titlyanova,et al.  δ13C and δ15N in tissues of reef building corals and the endolithic alga Ostreobium quekettii under their symbiotic and separate existence , 2009 .

[342]  B. Willis,et al.  Bleaching Resistance and the Role of Algal Endosymbionts , 2009 .

[343]  T. Lajeunesse,et al.  Do introduced endosymbiotic dinoflagellates ‘take’ to new hosts? , 2009, Biological Invasions.

[344]  B. Willis,et al.  High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium , 2009, Coral Reefs.

[345]  S. Hennige,et al.  Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures , 2009, Coral Reefs.

[346]  A. Correa,et al.  Understanding diversity in coral-algal symbiosis: a cluster-based approach to interpreting fine-scale genetic variation in the genus Symbiodinium , 2009, Coral Reefs.

[347]  D. Thornhill,et al.  Symbiodinium associations with diseased and healthy scleractinian corals , 2009, Coral Reefs.

[348]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[349]  D. Tchernov,et al.  Mechanisms of habitat segregation between corallimorpharians: photosynthetic parameters and Symbiodinium types , 2008 .

[350]  B. Willis,et al.  Species–specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress , 2008, Proceedings of the Royal Society B: Biological Sciences.

[351]  R. Gates,et al.  Diversity in populations of free‐living Symbiodinium from a Caribbean and Pacific reef , 2008 .

[352]  P. Bongaerts,et al.  Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type , 2008, Proceedings of the National Academy of Sciences.

[353]  R. Gates,et al.  Functional diversity in coral–dinoflagellate symbiosis , 2008, Proceedings of the National Academy of Sciences.

[354]  J. Reimer,et al.  Phylogenetic analyses of potentially free-living Symbiodinium spp. isolated from coral reef sand in Okinawa, Japan , 2008 .

[355]  A. Bird,et al.  DNA methylation landscapes: provocative insights from epigenomics , 2008, Nature Reviews Genetics.

[356]  J. C. Restrepo,et al.  Macroalgal-Associated Dinoflagellates Belonging to the Genus Symbiodinium in Caribbean Reefs , 2008, PloS one.

[357]  R. Berkelmans,et al.  A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization , 2008, Proceedings of the Royal Society B: Biological Sciences.

[358]  P. Frade,et al.  Variation in symbiont distribution between closely related coral species over large depth ranges , 2007, Molecular ecology.

[359]  M. Pigliucci,et al.  Epigenetics for ecologists. , 2007, Ecology letters.

[360]  T. Tregenza,et al.  Double-blind review favours increased representation of female authors. , 2008, Trends in ecology & evolution.

[361]  G. Schmidt,et al.  A microsampling method for genotyping coral symbionts , 2008, Coral Reefs.

[362]  Kevin de Queiroz,et al.  Species Concepts and Species Delimitation , 2007 .

[363]  S. R. Santos,et al.  Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates , 2007, Molecular ecology.

[364]  T. Lajeunesse,et al.  Microsatellites from clade B Symbiodinium spp. specialized for Caribbean corals in the genus Madracis , 2007 .

[365]  K. Resing,et al.  Mapping protein post-translational modifications with mass spectrometry , 2007, Nature Methods.

[366]  X. Pochon,et al.  One-year survey of a single Micronesian reef reveals extraordinarily rich diversity of Symbiodinium types in soritid foraminifera , 2007, Coral Reefs.

[367]  W. Stam,et al.  Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling , 2007, Coral Reefs.

[368]  Neil Boonham,et al.  Molecular Quantification of Symbiotic Dinoflagellate Algae of the Genus Symbiodinium , 2007, The Biological Bulletin.

[369]  A. Baker,et al.  Multiple symbiotic partnerships are common in scleractinian corals, but not in octocorals: Comment on Goulet (2006) , 2007 .

[370]  R. Bidigare,et al.  Visibly healthy corals exhibit variable pigment concentrations and symbiont phenotypes , 2007, Coral Reefs.

[371]  R. Gates,et al.  Recognizing diversity in coral symbiotic dinoflagellate communities , 2007, Molecular ecology.

[372]  Y. Nakano,et al.  Occurrence of the putatively heat-tolerant Symbiodinium phylotype D in high-latitudinal outlying coral communities , 2007, Coral Reefs.

[373]  S. R. Santos,et al.  Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians , 2006, Current Biology.

[374]  O. Hoegh‐Guldberg,et al.  The evolutionary history of Symbiodinium and scleractinian hosts-Symbiosis, diversity, and the effect of climate change , 2006 .

[375]  Ray Berkelmans,et al.  The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change , 2006, Proceedings of the Royal Society B: Biological Sciences.

[376]  T. Goulet Most corals may not change their symbionts , 2006 .

[377]  Mark E. Warner,et al.  DIFFERENTIAL IMPACTS OF PHOTOACCLIMATION AND THERMAL STRESS ON THE PHOTOBIOLOGY OF FOUR DIFFERENT PHYLOTYPES OF SYMBIODINIUM (PYRRHOPHYTA) 1 , 2006 .

[378]  M. Adjeroud,et al.  High genetic diversity of the symbiotic dinoflagellates in the coral Pocillopora meandrina from the South Pacific , 2006 .

[379]  G. Schmidt,et al.  Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion , 2006 .

[380]  X. Pochon,et al.  Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. , 2006, Molecular phylogenetics and evolution.

[381]  T. Goulet,et al.  Effect of short‐term exposure to elevated temperatures and light levels on photosynthesis of different host‐symbiont combinations in the Aiptasia pallida/Symbiodinium symbiosis , 2005 .

[382]  C. A. Sanchez,et al.  Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships , 2005, Molecular ecology.

[383]  M. Feder,et al.  The biological limitations of transcriptomics in elucidating stress and stress responses , 2005, Journal of evolutionary biology.

[384]  Eugenio R. Mendez,et al.  Multiple scattering on coral skeletons enhances light absorption by symbiotic algae , 2005 .

[385]  Rod B. Watson,et al.  Localization of Organelle Proteins by Isotope Tagging (LOPIT)*S , 2004, Molecular & Cellular Proteomics.

[386]  P. Falkowski,et al.  Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[387]  M. Bordons [Towards international recognition of spanish scientific publications]. , 2004, Revista espanola de cardiologia.

[388]  Kiyoshi Hagiwara,et al.  Isolation of New Symbiodinium Strains from Tridacnid Giant Clam (Tridacna crocea) and Sea Slug (Pteraeolidia ianthina) Using Culture Medium Containing Giant Clam Tissue Homogenate , 2004, Marine Biotechnology.

[389]  M. Takabayashi,et al.  MITOCHONDRIAL DNA PHYLOGENY OF THE SYMBIOTIC DINOFLAGELLATES (SYMBIODINIUM, DINOPHYTA) 1 , 2004 .

[390]  S. R. Santos,et al.  Fine‐scale diversity and specificity in the most prevalent lineage of symbiotic dinoflagellates (Symbiodinium, Dinophyceae) of the Caribbean , 2004, Molecular ecology.

[391]  K. Ulstrup,et al.  Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef , 2003, Molecular ecology.

[392]  A. Baker Flexibility and Specificity in Coral-Algal Symbiosis: Diversity, Ecology, and Biogeography of Symbiodinium , 2003 .

[393]  O. Hoegh‐Guldberg,et al.  Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium. , 2003, International journal of systematic and evolutionary microbiology.

[394]  T. Palmer,et al.  Competition and Coexistence: Exploring Mechanisms That Restrict and Maintain Diversity within Mutualist Guilds , 2003, The American Naturalist.

[395]  S. West,et al.  Host sanctions and the legume–rhizobium mutualism , 2003, Nature.

[396]  T. Maruyama,et al.  Comparison of phylogenies based on nuclear-encoded SSU rDNA and plastid-encoded psbA in the symbiotic dinoflagellate genus Symbiodinium , 2003 .

[397]  S. R. Santos,et al.  Phylogenetic Identification of Symbiotic Dinoflagellates via Length Heteroplasmy in Domain V of Chloroplast Large Subunit (cp23S)—Ribosomal DNA Sequences , 2003, Marine Biotechnology.

[398]  T. Goulet,et al.  Genetic composition of zooxanthellae between and within colonies of the octocoral Plexaura kuna, based on small subunit rDNA and multilocus DNA fingerprinting , 2003 .

[399]  S. R. Santos,et al.  Marine Biological Laboratory Molecular Genetic Evidence that Dinoflagellates Belonging to the Genus Symbiodinium Freudenthal Are Haploid , 2022 .

[400]  T. Lajeunesse INVESTIGATING THE BIODIVERSITY, ECOLOGY, AND PHYLOGENY OF ENDOSYMBIOTIC DINOFLAGELLATES IN THE GENUS SYMBIODINIUM USING THE ITS REGION: IN SEARCH OF A “SPECIES” LEVEL MARKER , 2001 .

[401]  S. R. Santos,et al.  GENETIC COMPARISONS OF FRESHLY ISOLATED VERSUS CULTURED SYMBIOTIC DINOFLAGELLATES: IMPLICATIONS FOR EXTRAPOLATING TO THE INTACT SYMBIOSIS , 2001 .

[402]  John Flowerdew,et al.  Attitudes of Journal Editors to Nonnative Speaker Contributions , 2001 .

[403]  T. Maruyama,et al.  CONSPECIFICITY AND INDO‐PACIFIC DISTRIBUTION OF SYMBIODINIUM GENOTYPES (DINOPHYCEAE) FROM GIANT CLAMS , 2000 .

[404]  T. Lajeunesse,et al.  Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). , 2000, The Biological bulletin.

[405]  Mark E. Warner,et al.  Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching , 2000 .

[406]  W. Fitt Cellular growth of host and symbiont in a cnidarian-zooxanthellar symbiosis. , 2000, The Biological bulletin.

[407]  R. Gates,et al.  Cell-specific density of symbiotic dinoflagellates in tropical anthozoans , 1998, Coral Reefs.

[408]  M. Lohuis,et al.  HYPERMETHYLATION AT CPG‐MOTIFS IN THE DINOFLAGELLATES AMPHIDINIUM CARTERAE (DINOPHYCEAE) AND SYMBIODINIUM MICROADRIATICUM (DINOPHYCEAE): EVIDENCE FROM RESTRICTION ANALYSES, 5‐AZACYTIDINE AND ETHIONINE TREATMENT , 1998 .

[409]  N. Knowlton,et al.  Landscape ecology of algal symbionts creates variation in episodes of coral bleaching , 1997, Nature.

[410]  Peter W. Glynn,et al.  Coral reef bleaching: facts, hypotheses and implications , 1996 .

[411]  N. Knowlton,et al.  Intraspecific diversity and ecological zonation in coral-algal symbiosis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[412]  R. Buddemeier,et al.  CORAL BLEACHING AS AN ADAPTIVE MECHANISM : A TESTABLE HYPOTHESIS , 1993 .

[413]  D. Powers,et al.  Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[414]  D. Powers,et al.  A Molecular Genetic Classification of Zooxanthellae and the Evolution of Animal-Algal Symbioses , 1991, Science.

[415]  D. Tautz Hypervariability of simple sequences as a general source for polymorphic DNA markers. , 1989, Nucleic acids research.

[416]  R. Trench,et al.  SYMBIODINIUM MICROADRIATICUM FREUDENTHAL, S. GOREAUII SP. NOV., S. KAWAGUTII SP. NOV. AND S. PILOSUM SP. NOV.: GYMNODINIOID DINOFLAGELLATE SYMBIONTS OF MARINE INVERTEBRATES 1 , 1987 .

[417]  G. Parker DISPERSAL OF ZOOXANTHELLAE ON CORAL REEFS BY PREDATORS ON CNIDARIANS , 1984 .

[418]  R. Trench,et al.  Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. I. Isoenzyme and soluble protein patterns of axenic cultures of Symbiodinium microadriaticum , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[419]  R. Trench,et al.  Genetic variation in Symbiodinium (= Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. III. Specificity and inlfectivity of Symbiodinium microadriaticum , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[420]  R. Trench,et al.  Specificity of Symbioses Between Marine Cnidarians and Zooxanthellae , 1976 .

[421]  Hugo D. Freudenthal,et al.  Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a Zooxanthella: Taxonomy, Life Cycle, and Morphology.* , 1962 .