Discrete Normalization and Standardization in Deterministic Residual Structures

We prove a version of the Standardization Theorem and the Discrete Normalization Theorem in stable Deterministic Residual Structures, Abstract Reduction Systems with axiomatized notions of residual, which model orthogonal rewrite systems. The latter theorem gives a strategy for construction of reductions Levy-equivalent (or permutation-equivalent) to a given, finite or infinite, regular (or semi-linear) reduction, based on the neededness concept of Huet and Levy. This and other results of this paper add to the understanding of Levy-equivalence of reductions, and consequently, Levy's reduction space. We demonstrate how elements of this space can be used to give denotational semantics to known functional languages in an abstract manner.

[1]  John R. W. Glauert,et al.  Relative Normalization in Deterministic Residual Structures , 1996, CAAP.

[2]  E.G.J.M.H. Nöcker Efficient functional programming: compilation and programming techniques , 1994 .

[3]  Tobias Nipkow Orthogonal Higher-Order Rewrite Systems are Confluent , 1993, TLCA.

[4]  John R. W. Glauert,et al.  Relative Normalization in Orthogonal Expression Reduction Systems , 1994, CTRS.

[5]  Björn Lisper Computing in Unpredictable Environments: Semantics, Reduction Strategies, and Program Transformations , 1998, Theor. Comput. Sci..

[6]  Jean-Jacques Lévy,et al.  An Algebraic Interpretation of the lambda beta K-Calculus; and an Application of a Labelled lambda -Calculus , 1976, Theor. Comput. Sci..

[7]  Zurab Khasidashvili Optimal Normalization in Orthogonal Term Rewriting Systems , 1993, RTA.

[8]  M. Ross The University of East Anglia , 1966 .

[9]  Giuseppe Longo,et al.  Set-theoretical models of λ-calculus: theories, expansions, isomorphisms , 1983, Ann. Pure Appl. Log..

[10]  Jean-Jacques Lévy,et al.  Computations in Orthogonal Rewriting Systems, II , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[11]  Zurab Khasidashvili Beta-reductions and Beta Developments of Lambda Terms with the Least Number of Steps , 1988, Conference on Computer Logic.

[12]  Aart Middeldorp,et al.  Sequentiality in Orthogonal Term Rewriting Systems , 1991, J. Symb. Comput..

[13]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[14]  Hendrik Pieter Barendregt,et al.  Needed Reduction and Spine Strategies for the Lambda Calculus , 1987, Inf. Comput..

[15]  J. Roger Hindley,et al.  An Abstract form of the church-rosser theorem. I , 1969, Journal of Symbolic Logic.

[16]  Zurab Khasidashvili On Higher Order Recursive Program Schemes , 1994, CAAP.

[17]  Aart Middeldorp,et al.  A Sequential Reduction Strategy , 1996, Theor. Comput. Sci..

[18]  G Boudol Computational semantics of term rewriting systems , 1986 .

[19]  J. Davenport Editor , 1960 .

[20]  M. J. Plasmeijer,et al.  Term graph rewriting: theory and practice , 1993 .

[21]  V. van Oostrom,et al.  Confluence for Abstract and Higher-Order Rewriting , 1994 .

[22]  Richard Kennaway Sequential Evaluation Strategies for Parallel-Or and Related Reduction Systems , 1989, Ann. Pure Appl. Log..

[23]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[24]  Jean-Jacques Lévy,et al.  An abstract standardisation theorem , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[25]  F. Raamsdonk Confluence and Normalisation of Higher-Order Rewriting , 1996 .

[26]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[27]  Philippa Gardner,et al.  Discovering Needed Reductions Using Type Theory , 1994, TACS.

[28]  Luc Maranget La strategie paresseuse , 1992 .

[29]  Jan Willem Klop,et al.  Term Rewriting Systems: From Church-Rosser to Knuth-Bendix and Beyond , 1990, ICALP.

[30]  Eugene W. Stark,et al.  Concurrent Transition Systems , 1989, Theor. Comput. Sci..

[31]  C.-H. Luke Ong,et al.  Full Abstraction in the Lazy Lambda Calculus , 1993, Inf. Comput..

[32]  Jean-Jacques Lévy,et al.  Minimal and optimal computations of recursive programs , 1977, JACM.

[33]  Zurab Khasidashvili The Church-rosser theorem in orthogonal combinatory reduction systems , 1991 .

[34]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[35]  Cosimo Laneve,et al.  Interaction Systems II: The Practice of Optimal Reductions , 1993, Theor. Comput. Sci..

[36]  John Glauert Zig-zag and Extraction Families in Non-duplicating Stable Deterministic Residual Structures , 1996 .

[37]  I. V. Ramakrishnan,et al.  Programming in equational logic: beyond strong sequentiality , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[38]  John Lamping An algorithm for optimal lambda calculus reduction , 1989, POPL '90.

[39]  Vinod Kathail,et al.  Optimal interpreters for lambda-calculus based functional languages , 1990 .

[40]  Jan Willem Klop,et al.  Transfinite Reductions in Orthogonal Term Rewriting Systems , 1995, Inf. Comput..

[41]  Jan Willem Klop,et al.  Trans nite Reductions in Orthogonal Term Rewriting , 1995 .

[42]  Rachid Echahed,et al.  A needed narrowing strategy , 2000, JACM.

[43]  Vincent van Oostrom,et al.  Higher-Order Families , 1996, RTA.

[44]  Z. Khasidashvili,et al.  -reductions and -developments of -terms with the Least Number of Steps , .

[45]  R. Lathe Phd by thesis , 1988, Nature.