Sentiment Lost: The Effect of Projecting the Empirical Pricing Kernel onto a Smaller Filtration Set

Supported by empirical examples, this paper provides a theoretical analysis to show what is the impact of an improper calibration of the physical measure on the estimation of the empirical pricing kernel. While extracting the risk-neutral measure from option data provides a naturally forward looking measure, extracting the real world probability from a stream of historical returns is only partially informative, thus suboptimal with respect to investors’ future beliefs. In virtue of this disalignment, most of papers present in literature are then affected by a non-homogeneity bias. From a probabilistic viewpoints, the missing beliefs are totally unaccessible stopping times on the coarser filtration set. As a consequence, an absolutely continuous local or strict local martingale, once projected on it, becomes continuous with jumps. As a result of a non fully informative physical measure, the proposed empirical pricing kernel is no longer a true martingale, as required by the classical theory, but a strict local martingale with consequences on the probabilistic nature of the relative risk neutral measure. Finally we show how the implied options’ moments help in reducing the degree of inaccessibility and shorten the distance between what is theoretically required and empirically accessible.

[1]  K. Arrow,et al.  EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .

[2]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[3]  Guy Johnson,et al.  Class $D$ supermartingales , 1963 .

[4]  P. Meyer Decomposition of supermartingales: The uniqueness theorem , 1963 .

[5]  K. Arrow The Role of Securities in the Optimal Allocation of Risk-bearing , 1964 .

[6]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[7]  Kiyosi Itô,et al.  Transformation of Markov processes by multiplicative functionals , 1965 .

[8]  B. Mandelbrot Forecasts of Future Prices, Unbiased Markets, and "Martingale" Models , 1966 .

[9]  R. Lucas ASSET PRICES IN AN EXCHANGE ECONOMY , 1978 .

[10]  Marc Yor,et al.  Changes of filtrations and of probability measures , 1978 .

[11]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[12]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[13]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[14]  J. Harrison,et al.  A stochastic calculus model of continuous trading: Complete markets , 1983 .

[15]  Phil Dybvig,et al.  Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in the Stock Market , 1988 .

[16]  P. Protter Stochastic integration and differential equations , 1990 .

[17]  Ravi Jagannathan,et al.  Implications of Security Market Data for Models of Dynamic Economies , 1990, Journal of Political Economy.

[18]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[19]  J. Jackwerth Recovering Risk Aversion from Option Prices and Realized Returns , 1998 .

[20]  M. Rubinstein.,et al.  Recovering Probability Distributions from Option Prices , 1996 .

[21]  Bhupinder Bahra Implied Risk-Neutral Probability Density Functions from Option Prices: Theory and Application , 1997 .

[22]  A. Lo,et al.  Nonparametric Estimation of State‐Price Densities Implicit in Financial Asset Prices , 1998 .

[23]  F. Delbaen,et al.  The fundamental theorem of asset pricing for unbounded stochastic processes , 1998 .

[24]  M. Yor,et al.  The importance of strictly local martingales; applications to radial Ornstein–Uhlenbeck processes , 1999 .

[25]  R. Engle,et al.  Empirical Pricing Kernels , 1999 .

[26]  Jens Carsten Jackwerth,et al.  Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review , 1999 .

[27]  E. Ghysels,et al.  A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation , 2000 .

[28]  David P. Brown,et al.  The Pricing Kernel Puzzle: Reconciling Index Option Data and Economic Theory , 2001 .

[29]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[30]  Alexandre Ziegler Why Does Implied Risk Aversion Smile? , 2002 .

[31]  R. Bliss,et al.  Option-Implied Risk Aversion Estimates , 2004 .

[32]  Mark Rubinstein,et al.  The Valuation of Uncertain Income Streams and the Pricing of Options , 1976 .

[33]  JackwerthJens Carsten,et al.  Option-Implied Risk-Neutral Distributions and Risk Aversion , 2006 .

[34]  D. Heath,et al.  A Benchmark Approach to Quantitative Finance , 2006 .

[35]  W. Härdle,et al.  Nonparametric state price density estimation using constrained least squares and the bootstrap , 2006 .

[36]  Philip Protter,et al.  Information reduction via level crossings in a credit risk model , 2007, Finance Stochastics.

[37]  Robert F. Engle,et al.  A GARCH Option Pricing Model in Incomplete Markets , 2007 .

[38]  M. Loewenstein,et al.  Options and Bubbles , 2007 .

[39]  René Garcia,et al.  State Dependence Can Explain the Risk Aversion Puzzle , 2008 .

[40]  P. Protter,et al.  ASSET PRICE BUBBLES IN INCOMPLETE MARKETS * , 2008 .

[41]  Stephen Figlewski Estimating the Implied Risk Neutral Density for the U.S. Market Portfolio , 2008 .

[42]  W. Härdle,et al.  Dynamics of State Price Densities , 2005 .

[43]  T. Hens,et al.  Three Solutions to the Pricing Kernel Puzzle , 2012 .

[44]  I. Karatzas,et al.  On optimal arbitrage , 2010, 1010.4987.

[45]  Peter F. Christoffersen,et al.  Capturing Option Anomalies with a Variance-Dependent Pricing Kernel , 2011 .

[46]  A NEW KIND OF AUGMENTATION OF FILTRATIONS SUITABLE FOR A CHANGE OF PROBABILITY MEASURE BY A STRICT LOCAL MARTINGALE , 2011, 1108.4243.

[47]  Philip Protter,et al.  Local martingales and filtration shrinkage , 2011 .

[48]  Brendan K. Beare Measure preserving derivatives and the pricing kernel puzzle , 2011 .

[49]  How to Detect an Asset Bubble , 2011, SIAM J. Financial Math..

[50]  Brendan K. Beare,et al.  AN EMPIRICAL TEST OF PRICING KERNEL MONOTONICITY , 2011 .

[51]  S. Ross The Recovery Theorem , 2011 .

[52]  P. Carr,et al.  Risk, Return, and Ross Recovery , 2012, The Journal of Derivatives.

[53]  F. Audrino,et al.  Empirical Pricing Kernel Estimation Using a Functional Gradient Descent Algorithm Based on Splines , 2012 .

[54]  R. Jarrow The Third Fundamental Theorem of Asset Pricing , 2012 .

[55]  P. Protter Strict Local Martingales with Jumps , 2013, 1307.2436.

[56]  R. Goldstein,et al.  Recovering Drifts and Preference Parameters from Financial Derivatives , 2013 .

[57]  Steve Ross,et al.  The Long Bond , 2013 .

[58]  J. Norris Appendix: probability and measure , 1997 .

[59]  R. Jarrow Option Pricing and Market Efficiency , 2013, The Journal of Portfolio Management.

[60]  POSITIVE ALPHAS, ABNORMAL PERFORMANCE, AND ILLUSORY ARBITRAGE , 2013 .

[61]  Dacheng Xiu,et al.  A Tale of Two Option Markets: Pricing Kernels and Volatility Risk , 2014 .

[62]  W. Härdle,et al.  Testing monotonicity of pricing kernels , 2008 .

[63]  L. Hansen,et al.  Misspecified Recovery , 2014, 1412.0042.

[64]  Mark Schroder,et al.  Monotonicity of the Stochastic Discount Factor and Expected Option Returns , 2013 .

[65]  The Pricing Kernel Density: The Case of the Information that Did Not Bark , 2015 .

[66]  F. Audrino,et al.  An Empirical Analysis of the Ross Recovery Theorem , 2015 .

[67]  Does the Pricing Kernel Anomaly Reflect Forward Looking Beliefs , 2015 .

[68]  W. Härdle,et al.  Uniform Confidence Bands for Pricing Kernels , 2010 .

[69]  Empirical Recovery: Hansen-Scheinkman Factorization and Ross Recovery from High Frequency Option Prices , 2016 .

[70]  Vadim Linetsky,et al.  Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery and Long-Term Pricing , 2014, Oper. Res..

[71]  V. Linetsky,et al.  Long Forward Probabilities, Recovery and the Term Structure of Bond Risk Premiums , 2016, 1601.06477.

[73]  Antonietta Mira,et al.  The Impact of Misalignment of Beliefs on the Estimation of the Pricing Kernel , 2017 .

[74]  Bailey,et al.  Asset Pricing , 2017, Encyclopedia of GIS.

[75]  Gonzalo Rubio,et al.  Expected Stock Returns , 2017 .

[76]  Gurdip Bakshi,et al.  A Recovery that We Can Trust? Deducing and Testing the Restrictions of the Recovery Theorem , 2017 .

[77]  Matthew Linn,et al.  Pricing Kernel Monotonicity and Conditional Information , 2017 .

[78]  W. Härdle,et al.  Reference-Dependent Preferences and the Empirical Pricing Kernel Puzzle , 2017 .

[79]  Ian W. R. Martin,et al.  What is the Expected Return on the Market , 2017 .

[80]  L. Pedersen,et al.  Generalized Recovery , 2018, Journal of Financial Economics.