STRONG INVARIANCE PRINCIPLES FOR DEPENDENT RANDOM VARIABLES

We establish strong invariance principles for sums of stationary and ergodic processes with nearly optimal bounds. Applications to linear and some nonlinear processes are discussed. Strong laws of large numbers and laws of the iterated logarithm are also obtained under easily verifiable conditions.

[1]  W. Philipp,et al.  Almost sure invariance principles for partial sums of weakly dependent random variables , 1975 .

[2]  W. Philipp Invariance Principles for Independent and Weakly Dependent Random Variables , 1986 .

[3]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[4]  Hajo Holzmann,et al.  Some remarks on the central limit theorem for stationary Markov processes , 2004 .

[5]  Wei Biao Wu,et al.  LOCAL WHITTLE ESTIMATION OF FRACTIONAL INTEGRATION FOR NONLINEAR PROCESSES , 2007, Econometric Theory.

[6]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[7]  E. Rio The Functional Law of the Iterated Logarithm for Stationary Strongly Mixing Sequences , 1995 .

[8]  C. Newman,et al.  Limit theorems for sums of dependent random variables occurring in statistical mechanics , 1978 .

[9]  M. Peligrad,et al.  A maximal _{}-inequality for stationary sequences and its applications , 2006 .

[10]  C. C. Heyde,et al.  Invariance Principles for the Law of the Iterated Logarithm for Martingales and Processes with Stationary Increments , 1973 .

[11]  W. Stout Almost sure convergence , 1974 .

[12]  The Law of the Iterated Logarithm for Mixing Stochastic Processes , 1969 .

[13]  Vitesses de convergence dans la loi forte des grands nombres pour des variables dépendantes , 2004 .

[14]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[15]  Ernst Eberlein,et al.  On Strong Invariance Principles Under Dependence Assumptions , 1986 .

[16]  A note on Strassen’s version of the law of the iterated logarithm , 1973 .

[17]  D. McLeish A Maximal Inequality and Dependent Strong Laws , 1975 .

[18]  M. Peligrad,et al.  A MAXIMAL Lp-INEQUALITY FOR STATIONARY SEQUENCES AND ITS APPLICATIONS , 2005 .

[19]  Volker Strassen,et al.  Almost sure behavior of sums of independent random variables and martingales , 1967 .

[20]  Ernst Eberlein,et al.  Dependence in probability and statistics : a survey of recent results (Oberwolfach, 1985) , 1988 .

[21]  R. Serfling,et al.  Convergence Properties of $S_n$ Under Moment Restrictions , 1970 .

[22]  M. B. Priestley,et al.  Non-linear and non-stationary time series analysis , 1990 .

[23]  F. Móricz Moment inequalities and the strong laws of large numbers , 1976 .

[24]  P. Major,et al.  An approximation of partial sums of independent RV's, and the sample DF. II , 1975 .

[25]  D. Volný Approximating martingales and the central limit theorem for strictly stationary processes , 1993 .

[26]  P. Phillips Unit root log periodogram regression , 2007 .

[27]  W. Woyczynski Asymptotic behavior of martingales in Banach spaces II , 1982 .

[28]  J. Dedecker,et al.  The conditional central limit theorem in Hilbert spaces , 2003 .

[29]  Magda Peligrad,et al.  A new maximal inequality and invariance principle for stationary sequences , 2004, math/0406606.

[30]  J. Doob Stochastic processes , 1953 .

[31]  W. Stout The Hartman-Wintner Law of the Iterated Logarithm for Martingales , 1970 .

[32]  R. C. Bradley Approximation theorems for strongly mixing random variables. , 1983 .

[33]  M. Kh. Reznik The Law of the Iterated Logarithm for Some Classes of Stationary Processes , 1968 .

[34]  W. Wu,et al.  On linear processes with dependent innovations , 2005 .

[35]  D. Menchoff,et al.  Sur les séries de fonctions orthogonales , 1923 .

[36]  Robert M. Kunst,et al.  Forecasting High-Frequency Financial Data with the ARFIMA-ARCH Model , 2001 .

[37]  V. Strassen An invariance principle for the law of the iterated logarithm , 1964 .

[38]  Wei Biao Wu,et al.  Limit theorems for iterated random functions , 2004, Journal of Applied Probability.

[39]  Clémentine Prieur,et al.  Coupling for τ-Dependent Sequences and Applications , 2004 .

[40]  M. Rosenblatt Central limit theorem for stationary processes , 1972 .

[41]  Richard T. Baillie,et al.  Analysing inflation by the fractionally integrated ARFIMA–GARCH model , 1996 .

[42]  Robert Serfling Moment Inequalities for the Maximum Cumulative Sum , 1970 .

[43]  T. Lai,et al.  Limit theorems for sums of dependent random variables , 1980 .

[44]  Jérôme Dedecker,et al.  On the functional central limit theorem for stationary processes , 2000 .

[45]  Joseph P. Romano,et al.  Inference for Autocorrelations under Weak Assumptions , 1996 .

[46]  N. Tien,et al.  On the convergence of weighted sums of martingale differences , 1989 .

[47]  W. Philipp,et al.  Approximation Thorems for Independent and Weakly Dependent Random Vectors , 1979 .

[48]  Carlo Novara,et al.  Nonlinear Time Series , 2003 .

[49]  Convergence Rates in the Law of Large Numbers for Banach-Valued Dependent Variables , 2008 .

[50]  Jérôme Dedecker,et al.  A new covariance inequality and applications , 2003 .

[51]  E. J. Hannan,et al.  The central limit theorem for time series regression , 1979 .

[52]  Martingale approximations for sums of stationary processes , 2004, math/0410160.

[53]  Michel Loève,et al.  Probability Theory I , 1977 .

[54]  Zhengyan Lin,et al.  Limit Theory for Mixing Dependent Random Variables , 1997 .

[55]  Y. Tse,et al.  Forecasting the Nikkei spot index with fractional cointegration , 1999 .

[56]  Jacques Akonom,et al.  Comportement asymptotique du temps d'occupation du processus des sommes partielles , 1993 .

[57]  D. McLeish Invariance principles for dependent variables , 1975 .

[58]  Ryozo Yokoyama,et al.  On the central limit theorem and law of the iterated logarithm for stationary processes with applications to linear processes , 1995 .

[59]  Law of the iterated logarithm for stationary processes , 2006, math/0612747.

[60]  Richard C. Bradley,et al.  Introduction to strong mixing conditions , 2007 .

[61]  P. Doukhan,et al.  Weak Dependence: Models and Applications , 2002 .

[62]  P. Doukhan,et al.  A new weak dependence condition and applications to moment inequalities , 1999 .

[63]  N. Bingham INDEPENDENT AND STATIONARY SEQUENCES OF RANDOM VARIABLES , 1973 .

[64]  T. Hsing,et al.  On weighted U-statistics for stationary processes , 2004, math/0410157.

[65]  Wei Biao Wu,et al.  On the Bahadur representation of sample quantiles for dependent sequences , 2005 .

[66]  Q. Shao Almost sure invariance principles for mixing sequences of random variables , 1993 .

[67]  L. Horváth,et al.  Limit Theorems in Change-Point Analysis , 1997 .

[68]  Wei Biao Wu,et al.  Inference of trends in time series , 2007 .

[69]  M. Woodroofe A central limit theorem for functions of a Markov chain with applications to shifts , 1992 .

[70]  W. Philipp A Functional Law of the Iterated Logarithm for Empirical Distribution Functions of Weakly Dependent Random Variables , 1977 .

[71]  On the central limit theorem and iterated logarithm law for stationary processes , 1975, Bulletin of the Australian Mathematical Society.

[72]  Florence Merlevède,et al.  Necessary and sufficient conditions for the conditional central limit theorem , 2002 .

[73]  J. Elton A multiplicative ergodic theorem for lipschitz maps , 1990 .

[74]  W. Wu,et al.  Nonlinear system theory: another look at dependence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[75]  W. Wu,et al.  MODERATE DEVIATIONS FOR STATIONARY PROCESSES , 2008 .

[76]  Persi Diaconis,et al.  Iterated Random Functions , 1999, SIAM Rev..

[77]  P. Major,et al.  An approximation of partial sums of independent RV'-s, and the sample DF. I , 1975 .