Efficient time-stepping scheme for dynamics on TT-manifolds
暂无分享,去创建一个
Reinhold Schneider | Ivan Oseledets | Boris N. Khoromskij | B. Khoromskij | I. Oseledets | R. Schneider
[1] Hans-Dieter Meyer,et al. Multidimensional quantum dynamics : MCTDH theory and applications , 2009 .
[2] Östlund,et al. Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.
[3] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[4] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[5] C. Lubich. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .
[6] Othmar Koch,et al. Dynamical Low-Rank Approximation , 2007, SIAM J. Matrix Anal. Appl..
[7] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[8] Reinhold Schneider,et al. On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.
[9] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[10] H. Meyer,et al. Benchmark calculations on high-dimensional Henon–Heiles potentials with the multi-configuration time dependent Hartree (MCTDH) method , 2002 .
[11] Martin J. Mohlenkamp,et al. Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[12] Boris N. Khoromskij,et al. Two-level Tucker-TT-QTT format for optimized tensor calculus , 2012 .
[13] Mark Coppejans,et al. Breaking the Curse of Dimensionality , 2000 .
[14] Lorenz S. Cederbaum,et al. Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems , 2007, cond-mat/0703237.
[15] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[16] Boris N. Khoromskij,et al. Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part II. HKT Representation of Certain Operators , 2005, Computing.
[17] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[18] Ivan P. Gavrilyuk,et al. Quantized-TT-Cayley Transform for Computing the Dynamics and the Spectrum of High-Dimensional Hamiltonians , 2011, Comput. Methods Appl. Math..
[19] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[20] Boris N. Khoromskij,et al. Hierarchical Kronecker tensor-product approximations , 2005, J. Num. Math..
[21] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[22] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[23] Ivan V. Oseledets,et al. Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..
[24] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[25] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[26] Lars Grasedyck,et al. Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.
[27] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..