Efficient time-stepping scheme for dynamics on TT-manifolds

Solution of non-stationary problems in high dimensions is feasible only if certain low-parametric nonlinear approximation to the solution is used. Thus, even if the initial system is linear, defining equations for the model parameters are nonlinear. The general concept is to use the Dirac-Frenkel principle to obtain the approximate trajectory on the manifold. In this paper, this approach is analyzed for the dynamical approximation of high-dimensional tensors in the so-called Tensor Train (TT)-format. We obtain an explicit system of ODEs describing the evolution of parameters, defining the solution, and propose an efficient and stable numerical scheme to solve this system. The efficiency of the proposed method is illustrated by the numerical examples. TT-format, Dirac-Frenkel, Splitting scheme, higher dimensions

[1]  Hans-Dieter Meyer,et al.  Multidimensional quantum dynamics : MCTDH theory and applications , 2009 .

[2]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[3]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[4]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[5]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[6]  Othmar Koch,et al.  Dynamical Low-Rank Approximation , 2007, SIAM J. Matrix Anal. Appl..

[7]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[8]  Reinhold Schneider,et al.  On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.

[9]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[10]  H. Meyer,et al.  Benchmark calculations on high-dimensional Henon–Heiles potentials with the multi-configuration time dependent Hartree (MCTDH) method , 2002 .

[11]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Boris N. Khoromskij,et al.  Two-level Tucker-TT-QTT format for optimized tensor calculus , 2012 .

[13]  Mark Coppejans,et al.  Breaking the Curse of Dimensionality , 2000 .

[14]  Lorenz S. Cederbaum,et al.  Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems , 2007, cond-mat/0703237.

[15]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[16]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part II. HKT Representation of Certain Operators , 2005, Computing.

[17]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[18]  Ivan P. Gavrilyuk,et al.  Quantized-TT-Cayley Transform for Computing the Dynamics and the Spectrum of High-Dimensional Hamiltonians , 2011, Comput. Methods Appl. Math..

[19]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[20]  Boris N. Khoromskij,et al.  Hierarchical Kronecker tensor-product approximations , 2005, J. Num. Math..

[21]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[22]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[23]  Ivan V. Oseledets,et al.  Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..

[24]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[25]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[26]  Lars Grasedyck,et al.  Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.

[27]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..