Feeding the multitude: A polynomial-time algorithm to improve sampling.

A wide variety of optimization techniques, both exact and heuristic, tend to be biased samplers. This means that when attempting to find multiple uncorrelated solutions of a degenerate Boolean optimization problem a subset of the solution space tends to be favored while, in the worst case, some solutions can never be accessed by the algorithm used. Here we present a simple postprocessing technique that improves sampling for any optimization approach, either quantum or classical. More precisely, starting from a pool of a few optimal configurations, the algorithm generates potentially new solutions via rejection-free cluster updates at zero temperature. Although the method is not ergodic and there is no guarantee that all the solutions can be found, fair sampling is typically improved. We illustrate the effectiveness of our method by improving the exponentially biased data produced by the D-Wave 2X quantum annealer [S. Mandrà et al., Phys. Rev. Lett. 118, 070502 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.070502], as well as data from three-dimensional Ising spin glasses. As part of the study, we also show that sampling is improved when suboptimal states are included and discuss sampling at a finite fixed temperature.

[1]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[2]  Charles M. Newman,et al.  Spin Glasses and Complexity , 2013 .

[3]  Firas Hamze,et al.  From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems. , 2017, Physical review. E.

[4]  Alejandro Perdomo-Ortiz,et al.  Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches , 2016, 1604.01746.

[5]  Andrew J. Ochoa,et al.  Efficient Cluster Algorithm for Spin Glasses in Any Space Dimension. , 2015, Physical review letters.

[6]  Firas Hamze,et al.  Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly , 2015, 1505.01545.

[7]  E. Tosatti,et al.  Optimization using quantum mechanics: quantum annealing through adiabatic evolution , 2006 .

[8]  Matthias Troyer,et al.  Feedback-optimized parallel tempering Monte Carlo , 2006, cond-mat/0602085.

[9]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[10]  Andrew J. Mayer,et al.  Satisfiability-based Set Membership Filters , 2014, J. Satisf. Boolean Model. Comput..

[11]  Finding Low-Temperature States With Parallel Tempering, Simulated Annealing And Simple Monte Carlo , 2002, cond-mat/0209248.

[12]  Peter van Beek,et al.  Backtracking Search Algorithms , 2006, Handbook of Constraint Programming.

[13]  John E. Dorband,et al.  A Method of Finding a Lower Energy Solution to a QUBO/Ising Objective Function , 2018, ArXiv.

[14]  J. Houdayer,et al.  A cluster Monte Carlo algorithm for 2-dimensional spin glasses , 2001 .

[15]  H. Rieger,et al.  New Optimization Algorithms in Physics: HARTMANN:NEW OPT.ALG.PHY. O-BK , 2004 .

[16]  Rupak Biswas,et al.  Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models , 2016, 1609.02542.

[17]  Bart Selman,et al.  Model Counting , 2021, Handbook of Satisfiability.

[18]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[19]  H. Katzgraber,et al.  Ground-state statistics from annealing algorithms: quantum versus classical approaches , 2009 .

[20]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[21]  Andrew J. Ochoa A STUDY OF QUANTUM ANNEALING DEVICES FROM A CLASSICAL PERSPECTIVE , 2017 .

[22]  Alán Aspuru-Guzik,et al.  Faster than classical quantum algorithm for dense formulas of exact satisfiability and occupation problems , 2015, New Journal of Physics.

[23]  Andrew D. King,et al.  Constructing SAT Filters with a Quantum Annealer , 2015, SAT.

[24]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[25]  Anna Levit,et al.  Free energy-based reinforcement learning using a quantum processor , 2017, ArXiv.

[26]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[27]  P. C. Smith Degeneracy , 1907, Edinburgh Medical Journal.

[28]  Matthias Troyer,et al.  Optimised simulated annealing for Ising spin glasses , 2014, Comput. Phys. Commun..

[29]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[30]  Ashley Montanaro,et al.  Quantum walk speedup of backtracking algorithms , 2015, Theory Comput..

[31]  Maliheh Aramon,et al.  Enhancing quantum annealing performance for the molecular similarity problem , 2017, Quantum Information Processing.

[32]  Daniel A. Lidar,et al.  Reexamining classical and quantum models for the D-Wave One processor , 2014, 1409.3827.

[33]  Bikas K. Chakrabarti,et al.  Quantum Annealing and Other Optimization Methods , 2005 .

[34]  Frauke Liers,et al.  Partitioning planar graphs: a fast combinatorial approach for max-cut , 2012, Comput. Optim. Appl..

[35]  H. Nishimori,et al.  Mathematical foundation of quantum annealing , 2008, 0806.1859.

[36]  F. Liers,et al.  Exact ground states of large two-dimensional planar Ising spin glasses. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  B. Chakrabarti,et al.  Quantum Annealing and Related Optimization Methods , 2008 .

[38]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[39]  Andrew J. Ochoa,et al.  Best-case performance of quantum annealers on native spin-glass benchmarks: How chaos can affect success probabilities , 2015, 1505.02278.

[40]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[41]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[42]  Mark W. Johnson,et al.  Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor , 2014, IEEE Transactions on Applied Superconductivity.

[43]  Anna Levit,et al.  Reinforcement learning using quantum Boltzmann machines , 2016, Quantum Inf. Comput..

[44]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[45]  Roger G. Melko,et al.  Learning Thermodynamics with Boltzmann Machines , 2016, ArXiv.

[46]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[47]  Helmut G. Katzgraber,et al.  Effective optimization using sample persistence: A case study on quantum annealers and various Monte Carlo optimization methods , 2017, Physical review. E.

[48]  H. Katzgraber,et al.  Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians. , 2016, Physical review letters.

[49]  Andrew D. King,et al.  Degeneracy, degree, and heavy tails in quantum annealing , 2015, 1512.07325.