A neoproterozoic snowball earth

Negative carbon isotope anomalies in carbonate rocks bracketing Neoproterozoic glacial deposits in Namibia, combined with estimates of thermal subsidence history, suggest that biological productivity in the surface ocean collapsed for millions of years. This collapse can be explained by a global glaciation (that is, a snowball Earth), which ended abruptly when subaerial volcanic outgassing raised atmospheric carbon dioxide to about 350 times the modern level. The rapid termination would have resulted in a warming of the snowball Earth to extreme greenhouse conditions. The transfer of atmospheric carbon dioxide to the ocean would result in the rapid precipitation of calcium carbonate in warm surface waters, producing the cap carbonate rocks observed globally.

[1]  Robert Blair Vocci Geology , 1882, Nature.

[2]  J. Dorr Iron-Formation in South America , 1973 .

[3]  G. E. Williams Late Precambrian glacial climate and the Earth's obliquity , 1975, Geological Magazine.

[4]  G. M. Young Iron-formation and glaciogenic rocks of the Rapitan Group, Northwest Territories, Canada , 1976 .

[5]  J. Roberts,et al.  Late Precambrian Dolomites, Vendian Glaciation, and Synchroneity of Vendian Glaciations , 1976, The Journal of Geology.

[6]  Paleoceanography. , 2021, Science.

[7]  David J. Des Marais,et al.  Carbon and its isotopes in mid-oceanic basaltic glasses , 1984 .

[8]  M. Kominz,et al.  Breakup of a supercontinent between 625 Ma and 555 Ma: new evidence and implications for continental histories , 1984 .

[9]  A. J. Kaufman,et al.  Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland , 1986, Nature.

[10]  W. M. Cady,et al.  Patterns of change in earth evolution , 1986 .

[11]  D. Ridley,et al.  Cape Town, South Africa , 1986, Journal of clinical ultrasound : JCU.

[12]  H. Carson The genetic system, the deme, and the origin of species. , 1987, Annual review of genetics.

[13]  H. Marshall,et al.  Long-term climate change and the geochemical cycle of carbon. , 1988, Journal of Geophysical Research.

[14]  Hans-Peter Schertl,et al.  Geochim. cosmochim. acta , 1989 .

[15]  S. Thompson,et al.  Global atmospheric circulation experiments on an Earth with polar and tropical continents , 1990, Journal of the Geological Society.

[16]  G. Williams Tidal Rhythmites: Key to the History of the Earth's Rotation and the Lunar Orbit , 1990 .

[17]  A. Hoppe,et al.  Late Proterozoic aragonitic cement crusts, Bambuí Group, Minas Gerais, Brazil , 1990 .

[18]  J. D. Aitken,et al.  Ediacaran remains from intertillite beds in northwestern Canada , 1990 .

[19]  J. Morse,et al.  Partition coefficients in calcite: Examination of factors influencing the validity of experimental results and their application to natural systems , 1990 .

[20]  L. Kump Interpreting carbon-isotope excursions: Strangelove oceans , 1991 .

[21]  P. Hoffman Did the Breakout of Laurentia Turn Gondwanaland Inside-Out? , 1991, Science.

[22]  K. Caldeira Continental-pelagic carbonate partitioning and the global carbonate-silicate cycle. , 1991, Geology.

[23]  A. J. Kaufman,et al.  Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism. , 1991, Precambrian research.

[24]  Malcolm R. Walter,et al.  Latest Proterozoic stratigraphy and Earth history , 1992, Nature.

[25]  K. Caldeira,et al.  Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds , 1992, Nature.

[26]  A. Knoll,et al.  The early evolution of eukaryotes: a geological perspective. , 1992, Science.

[27]  I. Dalziel Antarctica; A Tale of Two Supercontinents? , 1992 .

[28]  E. Friedmann,et al.  Physical and biogeochemical processes in Antarctic lakes , 1993 .

[29]  M. McElhinny,et al.  Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana , 1993 .

[30]  S. Baum,et al.  Effect of decreased solar luminosity on late Precambrian ice extent , 1993 .

[31]  A. Knoll Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Ellery D. Ingall,et al.  Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus , 1994 .

[33]  M. Rampino Tillites, Diamictites, and Ballistic Ejecta of Large Impacts , 1994, The Journal of Geology.

[34]  A World-Wide 2.2-2.0 Ga-Old Positive δ13Ccarb Anomaly as a Phenomenon in Relation to the Earth's Major Palaeoenviromental Changes , 1994 .

[35]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[36]  J. Meert Paleomagnetic investigation of the Neoproterozoic Gagwe lavas and Mbozi complex, Tanzania and the assembly of Gondwana , 1995 .

[37]  J. Hedges,et al.  Sedimentary organic matter preservation: an assessment and speculative synthesis , 1995 .

[38]  G. M. Young Are Neoproterozoic glacial deposits preserved on the margins of Laurentia related to the fragmentation of two supercontinents , 1995 .

[39]  R Buick,et al.  Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia. , 1995, Chemical geology.

[40]  A. Knoll,et al.  Anomalous carbonate precipitates: is the Precambrian the key to the Permian? , 1995, Palaios.

[41]  P. Schmidt,et al.  The Neoproterozoic climatic paradox: Equatorial palaeolatitude for Marinoan glaciation near sea level in South Australia , 1995 .

[42]  Donald E. Canfield,et al.  Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies , 1996, Nature.

[43]  A. Knoll,et al.  Comparative Earth History and Late Permian Mass Extinction , 1996, Science.

[44]  C. Sonett,et al.  Late Proterozoic and Paleozoic Tides, Retreat of the Moon, and Rotation of the Earth , 1996, Science.

[45]  A. Schultz,et al.  Mid-Ocean Ridge Hydrothermal Fluxes and the Chemical Composition of the Ocean , 1996 .

[46]  R. Voo,et al.  Paleomagnetic and 40Ar/39Ar Study of the Sinyai Dolerite, Kenya: Implications for Gondwana Assembly , 1996, The Journal of Geology.

[47]  M. Kennedy Stratigraphy, sedimentology, and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones; deglaciation, delta 13 C excursions, and carbonate precipitation , 1996 .

[48]  K. C. Lohmann,et al.  Carbon isotope ratios of Phanerozoic marine cements: Re-evaluating the global carbon and sulfur systems , 1997 .

[49]  A. J. Kaufman,et al.  Isotopes, ice ages, and terminal Proterozoic earth history. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Kirschvink,et al.  Low-latitude glaciation in the Palaeoproterozoic era , 1997, Nature.

[51]  K. Niklas The evolutionary biology of plants , 1997 .

[52]  K. Nealson The limits of life on Earth and searching for life on Mars. , 1997, Journal of geophysical research.

[53]  G. Vidal,et al.  Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton , 1997, Paleobiology.

[54]  F Forget,et al.  Warming early Mars with carbon dioxide clouds that scatter infrared radiation. , 1997, Science.

[55]  John K. Park Paleomagnetic evidence for low-latitude glaciation during deposition of the Neoproterozoic Rapitan Group, Mackenzie Mountains, N.W.T., Canada , 1997 .

[56]  Zare,et al.  Photofragment helicity caused by matter-wave interference from multiple dissociative states , 1998, Science.

[57]  R. Voo,et al.  THE PROTEROZOIC SUPERCONTINENT RODINIA : PALEOMAGNETICALLY DERIVED RECONSTRUCTIONS FOR 1100 TO 800 MA , 1998 .

[58]  M. Brasier,et al.  A billion years of environmental stability and the emergence of eukaryotes: new data from northern Australia. , 1998, Geology.

[59]  J. Ashby References and Notes , 1999 .

[60]  J. Clarke,et al.  Cool-water Carbonates , 2000 .