Adversaries in networks

Abstract : As systems become more distributed, they are vulnerable to new forms of attack. An adversary could seize control of several nodes in a network and reprogram them, unbeknownst to the rest of the network. Strategies are needed that can ensure robust performance in the presence of these sorts of attacks. This thesis studies the adversarial problem in three scenarios.

[1]  April Rasala Lehman,et al.  Complexity classification of network information flow problems , 2004, SODA '04.

[2]  Felix F. Wu,et al.  Network Observability: Theory , 1985, IEEE Power Engineering Review.

[3]  Rudolf Ahlswede,et al.  Source coding with side information and a converse for degraded broadcast channels , 1975, IEEE Trans. Inf. Theory.

[4]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[5]  L. Ozarow,et al.  On a source-coding problem with two channels and three receivers , 1980, The Bell System Technical Journal.

[6]  Tracey Ho,et al.  Byzantine modification detection in multicast networks using randomized network coding , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[7]  Lang Tong,et al.  Limiting false data attacks on power system state estimation , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[8]  Toby Berger,et al.  The CEO problem [multiterminal source coding] , 1996, IEEE Trans. Inf. Theory.

[9]  Pramod Viswanath,et al.  Rate Region of the Quadratic Gaussian Two-Encoder Source-Coding Problem , 2006, ISIT.

[10]  R. Yeung,et al.  Secure network coding , 2002, Proceedings IEEE International Symposium on Information Theory,.

[11]  Mulukutla S. Sarma,et al.  Power System Analysis and Design , 1993 .

[12]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[13]  Tracey Ho,et al.  Network error correction with unequal link capacities , 2009 .

[14]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[15]  Zhen Zhang,et al.  On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.

[16]  R. Yeung,et al.  NETWORK ERROR CORRECTION, PART II: LOWER BOUNDS , 2006 .

[17]  Peter Sanders,et al.  Polynomial time algorithms for multicast network code construction , 2005, IEEE Transactions on Information Theory.

[18]  Giuseppe Longo,et al.  The information theory approach to communications , 1977 .

[19]  Richard C. Singleton,et al.  Maximum distance q -nary codes , 1964, IEEE Trans. Inf. Theory.

[20]  J. Goldberg,et al.  SIFT: Design and analysis of a fault-tolerant computer for aircraft control , 1978, Proceedings of the IEEE.

[21]  Aaron D. Wyner,et al.  The common information of two dependent random variables , 1975, IEEE Trans. Inf. Theory.

[22]  Felix F. Wu,et al.  Detection of Topology Errors by State Estimation , 1989, IEEE Power Engineering Review.

[23]  Thomas M. Cover,et al.  A Proof of the Data Compression Theorem of Slepian and Wolf for Ergodic Sources , 1971 .

[24]  Toby Berger,et al.  Robust Distributed Source Coding , 2006, IEEE Transactions on Information Theory.

[25]  M. Ribbens-Pavella,et al.  Bad Data Identification Methods In Power System State Estimation-A Comparative Study , 1985, IEEE Transactions on Power Apparatus and Systems.

[26]  Randall Dougherty,et al.  Networks, Matroids, and Non-Shannon Information Inequalities , 2007, IEEE Transactions on Information Theory.

[27]  Muriel Médard,et al.  An algebraic approach to network coding , 2003, TNET.

[28]  Leslie Lamport,et al.  The Implementation of Reliable Distributed Multiprocess Systems , 1978, Comput. Networks.

[29]  Neri Merhav,et al.  When is the generalized likelihood ratio test optimal? , 1992, IEEE Trans. Inf. Theory.

[30]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[31]  Nelson M. Blachman,et al.  The convolution inequality for entropy powers , 1965, IEEE Trans. Inf. Theory.

[32]  Peng Ning,et al.  False data injection attacks against state estimation in electric power grids , 2009, CCS.

[33]  Takahiro Matsuda,et al.  Performance evaluation of new multicast architecture with network coding , 2003 .

[34]  Yasutada Oohama,et al.  The Rate-Distortion Function for the Quadratic Gaussian CEO Problem , 1998, IEEE Trans. Inf. Theory.

[35]  Gene H. Golub,et al.  Matrix computations , 1983 .

[36]  Baochun Li,et al.  How Practical is Network Coding? , 2006, 200614th IEEE International Workshop on Quality of Service.

[37]  H. Witsenhausen,et al.  Source coding for multiple descriptions II: A binary source , 1981, The Bell System Technical Journal.

[38]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[39]  Abbas El Gamal,et al.  Achievable rates for multiple descriptions , 1982, IEEE Trans. Inf. Theory.

[40]  Vinod M. Prabhakaran,et al.  Rate region of the quadratic Gaussian CEO problem , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[41]  Frank Harary,et al.  Graph Theory , 2016 .

[42]  János Körner,et al.  How to encode the modulo-two sum of binary sources (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[43]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[44]  Leslie Lamport,et al.  Reaching Agreement in the Presence of Faults , 1980, JACM.

[45]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[46]  H. S. Witsenhausen,et al.  B.S.T.J. brief: On source networks with minimal breakdown degradation , 1980, The Bell System Technical Journal.

[47]  Tracey Ho,et al.  Achievable strategies for general secure network coding , 2010, 2010 Information Theory and Applications Workshop (ITA).

[48]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[49]  Muriel Médard,et al.  An algebraic watchdog for wireless network coding , 2009, 2009 IEEE International Symposium on Information Theory.

[50]  Yasutada Oohama,et al.  Rate-distortion theory for Gaussian multiterminal source coding systems with several side informations at the decoder , 2005, IEEE Transactions on Information Theory.

[51]  Rudolf Ahlswede,et al.  The rate-distortion region for multiple descriptions without excess rate , 1985, IEEE Trans. Inf. Theory.

[52]  Pramod Viswanath Sum Rate of a Class of Multiterminal Gaussian Source Coding Problems , 2003, Advances in Network Information Theory.

[53]  Bernard C. Levy,et al.  Principles of Signal Detection and Parameter Estimation , 2008 .

[54]  R. Koetter,et al.  The benefits of coding over routing in a randomized setting , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[55]  A. Monticelli,et al.  Electric power system state estimation , 2000, Proceedings of the IEEE.

[56]  Toby Berger,et al.  The quadratic Gaussian CEO problem , 1997, IEEE Trans. Inf. Theory.

[57]  Stephen Boyd,et al.  Estimation of faults in DC electrical power system , 2009, 2009 American Control Conference.

[58]  Nitin H. Vaidya,et al.  When Watchdog Meets Coding , 2009, 2010 Proceedings IEEE INFOCOM.

[59]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[60]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[61]  E. Handschin,et al.  Bad data analysis for power system state estimation , 1975, IEEE Transactions on Power Apparatus and Systems.

[62]  Aaron D. Wyner,et al.  On source coding with side information at the decoder , 1975, IEEE Trans. Inf. Theory.

[63]  A. Abur,et al.  Improved bad data processing via strategic placement of PMUs , 2005, IEEE Power Engineering Society General Meeting, 2005.

[64]  Lang Tong,et al.  Variable-Rate Distributed Source Coding in the Presence of Byzantine Sensors , 2007, ISIT.

[65]  Ning Cai,et al.  Network Error Correction, I: Basic Concepts and Upper Bounds , 2006, Commun. Inf. Syst..

[66]  H.-J. Koglin,et al.  Bad data detection and identification , 1990 .

[67]  Lang Tong,et al.  Nonlinear network coding is necessary to combat general Byzantine attacks , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[68]  L. Tong,et al.  Malicious Data Attacks on Smart Grid State Estimation: Attack Strategies and Countermeasures , 2010, 2010 First IEEE International Conference on Smart Grid Communications.

[69]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[70]  Raymond W. Yeung,et al.  A framework for linear information inequalities , 1997, IEEE Trans. Inf. Theory.

[71]  A.G. Phadke,et al.  Recent developments in state estimation with phasor measurements , 2009, 2009 IEEE/PES Power Systems Conference and Exposition.

[72]  Raymond W. Yeung,et al.  On a relation between information inequalities and group theory , 2002, IEEE Trans. Inf. Theory.

[73]  William H. Cunningham On submodular function minimization , 1985, Comb..

[74]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[75]  A. Wyner,et al.  Source coding for multiple descriptions , 1980, The Bell System Technical Journal.

[76]  Muriel Médard,et al.  XORs in the air: practical wireless network coding , 2008, TNET.

[77]  Leslie Lamport,et al.  The Byzantine Generals Problem , 1982, TOPL.

[78]  A. Monticelli,et al.  Fast Decoupled State Estimation and Bad Data Processing , 1979, IEEE Transactions on Power Apparatus and Systems.

[79]  G. Krumpholz,et al.  Power System Observability: A Practical Algorithm Using Network Topology , 1980, IEEE Transactions on Power Apparatus and Systems.

[80]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[81]  Shuo-Yen Robert Li,et al.  Linear network coding , 2003, IEEE Trans. Inf. Theory.

[82]  Tracey Ho,et al.  Resilient Network Coding in the Presence of Byzantine Adversaries , 2007, INFOCOM.

[83]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[84]  S. Kourouklis,et al.  A Large Deviation Result for the Likelihood Ratio Statistic in Exponential Families , 1984 .