Monad-independent Dynamic Logic in HasCasl

Monads have been recognized by Moggi as an elegant device for dealing with stateful computation in functional programming languages. In previous work, we have introduced a Hoare calculus for partial correctness of monadic programs. All this has been done in an entirely monad-independent way. Here, we extend this to a monad-independent dynamic logic (assuming a moderate amount of additional infrastructure for the monad). Dynamic logic is more expressive than the Hoare calculus; in particular, it allows reasoning about termination and total correctness. As the background formalism for these concepts, we use the logic of HASCASL, a higher-order language for functional specification and programming.

[1]  Eugenio Moggi,et al.  Categories of Partial Morphisms and the lambdap - Calculus , 1985, CTCS.

[2]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[3]  Jacques Loeckx,et al.  The Foundations of Program Verification , 1987 .

[4]  Peyton Jones,et al.  Haskell 98 language and libraries : the revised report , 2003 .

[5]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[6]  Alex K. Simpson,et al.  The proof theory and semantics of intuitionistic modal logic , 1994 .

[7]  Philip Wadler,et al.  How to declare an imperative , 1997, CSUR.

[8]  Lutz Schröder,et al.  The HasCasl Prologue : Categorical Syntax and Semantics of the Partial λ-Calculus , 2005 .

[9]  Jerzy Tiuryn,et al.  Logics of Programs , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[10]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[11]  Till Mossakowski,et al.  Monad-Independent Hoare Logic in HASCASL , 2003, FASE.

[12]  S. Lane Categories for the Working Mathematician , 1971 .

[13]  Peter D. Mosses,et al.  CASL: the Common Algebraic Specification Language , 2002, Theor. Comput. Sci..

[14]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[15]  E. Moggi The partial lambda calculus , 1988 .

[16]  Wolfgang Thomas,et al.  Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics , 1990 .

[17]  Hayo Thielecke,et al.  Categorical Structure of Continuation Passing Style , 1997 .

[18]  Andrzej Filinski Declarative Continuations: an Investigation of Duality in Programming Language Semantics , 1989, Category Theory and Computer Science.

[19]  Lutz Schröder Henkin Models of the Partial sigma-Calculus , 2003, CSL.

[20]  Erik Palmgren,et al.  Wellfounded trees in categories , 2000, Ann. Pure Appl. Log..

[21]  Franz Regensburger,et al.  HOLCF: Higher Order Logic of Computable Functions , 1995, TPHOLs.

[22]  Robert Hieb,et al.  The Revised Report on the Syntactic Theories of Sequential Control and State , 1992, Theor. Comput. Sci..

[23]  Carsten Führmann,et al.  Varieties of Effects , 2002, FoSSaCS.

[24]  Eugenio Moggi A Semantics for Evaluation Logic , 1995, Fundam. Informaticae.

[25]  Anne Elisabeth Haxthausen,et al.  CASL - The CoFI Algebraic Specification Language (Tentative Design, version 0.95) - Language Summary, with annotations concerning the semantics of constructs , 1997 .

[26]  Gordon D. Plotkin,et al.  Notions of Computation Determine Monads , 2002, FoSSaCS.

[27]  Till Mossakowski,et al.  HasCasl-Integrated functional specification and programming , 2003 .

[28]  Edsger W. Dijkstra,et al.  A Discipline of Programming , 1976 .

[29]  Lawrence C. Paulson,et al.  Constructing Recursion Operators in Intuitionistic Type Theory , 1986, J. Symb. Comput..

[30]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[31]  Till Mossakowski,et al.  Monad-Independent Dynamic Logic in Has Casl , 2002, WADT.

[32]  Lutz Schröder,et al.  Classifying categories for partial equational logic , 2003, CTCS.

[33]  Carsten Führmann,et al.  The structure of call-by-value , 2000 .

[34]  Roy L. Crole,et al.  Programming metalogics with a fixpoint type , 1991 .

[35]  Till Mossakowski,et al.  HASCASL: Towards Integrated Specification and Development of Functional Programs , 2002, AMAST.

[36]  Gordon D. Plotkin,et al.  A Framework for Intuitionistic Modal Logics , 1988, TARK.

[37]  Vaughan R. Pratt,et al.  SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC , 1976, FOCS 1976.