Eco-friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte.

As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, novel concepts are urgently needed concerning batteries that have high energy densities, low costs, and high levels of safety. Here, a novel eco-friendly energy storage system (ESS) using seawater and an ionic liquid is proposed for the first time; this represents an intermediate system between a battery and a fuel cell, and is accordingly referred to as a hybrid rechargeable cell. Compared to conventional organic electrolytes, the ionic liquid electrolyte significantly enhances the cycle performance of the seawater hybrid rechargeable system, acting as a very stable interface layer between the Sn-C (Na storage) anode and the NASICON (Na3 Zr2 Si2 PO12) ceramic solid electrolyte, making this system extremely promising for cost-efficient and environmentally friendly large-scale energy storage.

[1]  Youngsik Kim,et al.  Commercial and research battery technologies for electrical energy storage applications , 2015 .

[2]  Y. Gogotsi,et al.  Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. , 2015, Angewandte Chemie.

[3]  Christopher S. Johnson,et al.  Rechargeable Seawater Battery and Its Electrochemical Mechanism , 2015 .

[4]  Arumugam Manthiram,et al.  Lithium–Sulfur Batteries: Progress and Prospects , 2015, Advanced materials.

[5]  Stefano Passerini,et al.  Aus ionischen Flüssigkeiten hergestellte Materialien für die Energiespeicherung , 2014 .

[6]  Bruno Scrosati,et al.  Energy storage materials synthesized from ionic liquids. , 2014, Angewandte Chemie.

[7]  Youngsik Kim,et al.  Metal-free hybrid seawater fuel cell with an ether-based electrolyte , 2014 .

[8]  Youngsik Kim,et al.  Rechargeable-hybrid-seawater fuel cell , 2014 .

[9]  Jian Sun,et al.  Ionic liquid-based green processes for energy production. , 2014, Chemical Society reviews.

[10]  Y. Ein‐Eli,et al.  Liquid-free lithium-oxygen batteries. , 2014, Angewandte Chemie.

[11]  Tae-Hee Kim,et al.  Electrochemical Properties of Electrodeposited Sn Anodes for Na-Ion Batteries , 2014 .

[12]  Yingchang Yang,et al.  Lithium Titanate Tailored by Cathodically Induced Graphene for an Ultrafast Lithium Ion Battery , 2014 .

[13]  D. Bresser,et al.  Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes , 2014 .

[14]  Yuyan Shao,et al.  Controlling SEI Formation on SnSb‐Porous Carbon Nanofibers for Improved Na Ion Storage , 2014, Advanced materials.

[15]  Dong Liu,et al.  Optimizing Main Materials for a Lithium‐Air Battery of High Cycle Life , 2014 .

[16]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[17]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[18]  Dong Ju Lee,et al.  Alternative materials for sodium ion–sulphur batteries , 2013 .

[19]  Seung M. Oh,et al.  An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode. , 2013, Physical chemistry chemical physics : PCCP.

[20]  Peter G. Bruce,et al.  Lithiumbatterien und elektrische Doppelschichtkondensatoren: aktuelle Herausforderungen , 2012 .

[21]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[22]  Robert W. Black,et al.  Non‐Aqueous and Hybrid Li‐O2 Batteries , 2012 .

[23]  H. Abe,et al.  UV–vis spectroscopic study of room temperature ionic liquid–water mixtures: N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate , 2012 .

[24]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[25]  Hong Li,et al.  Thermodynamic analysis on energy densities of batteries , 2011 .

[26]  Jou‐Hyeon Ahn,et al.  An imidazolium based ionic liquid electrolyte for lithium batteries , 2010 .

[27]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[28]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[29]  M. Armand,et al.  Building better batteries , 2008, Nature.

[30]  P. K. Mandal,et al.  How transparent are the imidazolium ionic liquids? A case study with 1-methyl-3-butylimidazolium hexafluorophosphate, [bmim][PF6] , 2005 .

[31]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[32]  Marshall C. Smart,et al.  Improved performance of lithium-ion cells with the use of fluorinated carbonate-based electrolytes , 2003 .

[33]  R. Kostecki,et al.  Electrochemical and Infrared Studies of the Reduction of Organic Carbonates , 2001 .

[34]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[35]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[36]  Linda F. Nazar,et al.  Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery , 2015 .

[37]  P. Simon,et al.  Energy applications of ionic liquids , 2014 .

[38]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .