Voltage/frequency rate dependent modeling for nano-robotic systems based on piezoelectric stick-slip actuators

In order to define trajectory-tracking strategies for nano-robotic systems using piezoelectric stick-slip actuators, the dynamics of the elementary actuator must be studied and well modeled. The modeling of this class of actuators is complex because several nonlinear parameters are involved. In this paper, we propose a systematic modeling methodology of piezoelectric stick-slip actuators for nano-robotic systems control. The main idea is the proposition of an augmented voltage/frequency rate dependent modeling of the friction force based on a multi-state elasto-plastic formulation. Experimental and simulation results demonstrate the efficiency of the model in the time and the frequency domains. As a case of study, the proposed model is used to define a control strategy in order to detect collisions when the nano-robotic system is operating inside a Scanning Electron Microscope (SEM). This application demonstrates the need of a voltage/frequency rate dependent modeling.

[1]  Jean-Ochin Abrahamians,et al.  A Nanorobotic System for In Situ Stiffness Measurements on Membranes , 2014, IEEE Transactions on Robotics.

[2]  Shyr-Long Jeng,et al.  Motion behavior of triangular waveform excitation input in an operating impact drive mechanism , 2011 .

[3]  F. Al-Bender,et al.  A generalized Maxwell-slip friction model appropriate for control purposes , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[4]  Han Qu,et al.  A piezoelectric-driven rotary actuator by means of inchworm motion , 2013 .

[5]  Jaehwan Kim,et al.  A hybrid inchworm linear motor , 2002 .

[6]  Willy Charon,et al.  Benefits of amplification in an inertial stepping motor , 2012 .

[7]  W. Driesen,et al.  Applications of Piezo-Actuated Micro-Robots in Micro-Biology and Material Science , 2007, 2007 International Conference on Mechatronics and Automation.

[8]  Rong-Fong Fung,et al.  Dynamic modeling of a high-precision self-moving stage with various frictional models , 2008 .

[9]  Fathi H. Ghorbel,et al.  Nanoscale Friction Dynamic Modeling , 2009 .

[10]  M. Kurosawa,et al.  A micro ultrasonic motor using a micro-machined cylindrical bulk PZT transducer , 2006 .

[11]  Vincent Hayward,et al.  Single state elastoplastic friction models , 2002, IEEE Trans. Autom. Control..

[12]  Zdeněk Hurák,et al.  Hybrid charge control for stick–slip piezoelectric actuators , 2011 .

[13]  Stéphane Régnier,et al.  Nonlinear modeling for a class of nano-robotic systems using piezoelectric stick-slip actuators , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[14]  Haiwei Lu,et al.  An inchworm mobile robot using electromagnetic linear actuator , 2009 .

[15]  Genadijus Kulvietis,et al.  Modelling and analysis of omni-directional piezoelectric actuator , 2007 .

[16]  Sungho Lee,et al.  A new fast inchworm type actuator with the robust I/Q heterodyne interferometer feedback , 2006 .

[17]  Morita,et al.  A cylindrical micro-ultrasonic motor (stator transducer size: 1.4 mm in diameter and 5.0 mm long) , 2000, Ultrasonics.