Stability analysis for a class of negative imaginary feedback systems including an integrator

In this paper, we study a class of negative imaginary linear time invariant multiple-input multiple-output systems. We generalize an existing negative imaginary lemma to include systems containing a simple pole at the origin. Also, a stability analysis result is presented for generalized negative imaginary systems including an integrator and an illustrative example is presented to support the results.

[1]  Ian R. Petersen,et al.  A modified positive-real type stability condition , 2007, 2007 European Control Conference (ECC).

[2]  Ian R. Petersen,et al.  Towards Controller Synthesis for Systems with Negative Imaginary Frequency Response , 2010, IEEE Transactions on Automatic Control.

[3]  Ian R. Petersen,et al.  A Negative Imaginary Lemma and the Stability of Interconnections of Linear Negative Imaginary Systems , 2010, IEEE Transactions on Automatic Control.

[4]  Ian R. Petersen,et al.  Finite Frequency Negative Imaginary Systems , 2010, IEEE Transactions on Automatic Control.

[5]  Ian R. Petersen,et al.  Stability analysis of positive feedback interconnections of linear negative imaginary systems , 2009, 2009 American Control Conference.

[6]  Ian R. Petersen,et al.  On lossless negative imaginary systems , 2009, 2009 7th Asian Control Conference.

[7]  Bernhard Maschke,et al.  Dissipative Systems Analysis and Control , 2000 .

[8]  Ian R. Petersen,et al.  A strongly strict negative-imaginary lemma for non-minimal linear systems , 2011, Commun. Inf. Syst..

[9]  Alexander Lanzon,et al.  Feedback Control of Negative-Imaginary Systems , 2010, IEEE Control Systems.

[10]  Rudolf Scherer,et al.  A generalization of the positive real lemma , 1994, IEEE Trans. Autom. Control..

[11]  M. J. Grimble Design of optimal stochastic regulating systems including integral action , 1979 .

[12]  Chaohong Cai,et al.  Stability Analysis for a String of Coupled Stable Subsystems With Negative Imaginary Frequency Response , 2010, IEEE Transactions on Automatic Control.

[13]  Ian R. Petersen,et al.  Stability Robustness of a Feedback Interconnection of Systems With Negative Imaginary Frequency Response , 2008, IEEE Transactions on Automatic Control.

[14]  Y. Yong,et al.  Atomic force microscopy with a 12-electrode piezoelectric tube scanner. , 2010, The Review of scientific instruments.

[15]  B. Bhikkaji,et al.  Fast scanning using piezoelectric tube nanopositioners: A negative imaginary approach , 2009, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[16]  J. L. Fanson,et al.  Positive position feedback control for large space structures , 1990 .