Spectral reflectance of carbonate mineral mixtures and bidirectional reflectance theory: Quantitative analysis techniques for application in remote sensing

Abstract High‐spectral resolution imaging spectrometers, which acquire remotely sensed data in many contiguous spectral bands, allow for the direct identification of surface mineralogy by comparing pixel and laboratory spectra. The advent of such technology requires a better understanding of reflectance spectroscopy, therefore visible and near‐infrared (0.4–2.5 μm) reflectance spectra of carbonates are discussed in this paper. Electronic processes in cations and vibrational processes involving the crystal lattice produce the main spectral absorption features. Subsequently, mineral impurities are reflected in the reflectance spectra. A simple semi‐empirical model is presented for determination of artificial spectral reflectance of mineral mixtures based on their single‐component reflectivity. The model is used to explain the effect of particle size and distribution, iron, water bounded by clay minerals, and organic material on the reflectivity of carbonate minerals. Similarly, reflectance spectra of calcit...

[1]  P. Kubelka,et al.  New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[2]  A. Emslie,et al.  Spectral reflectance and emittance of particulate materials. 1: theory. , 1973, Applied optics.

[3]  B. Hapke Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect , 1986 .

[4]  J. Salisbury,et al.  Visible and near infrared spectra of minerals and rocks. VI. Additional silicates , 1973 .

[5]  R. J. P. Lyon,et al.  DISCRIMINATING DOLOMITIZATION OF MARBLE IN THE LUDWIG SKARN NEAR YERINGTON, NEVADA USING HIGH-RESOLUTION AIRBORNE INFRARED IMAGERY , 1991 .

[6]  Harry W. Green,et al.  Test ultrastructure of some calcareous Foraminifera , 1977 .

[7]  S. Gaffey,et al.  Spectral reflectance of carbonate minerals in the visible and near infrared (O.35-2.55 microns); calcite, aragonite, and dolomite , 1986 .

[8]  John B. Adams,et al.  4 – INTERPRETATION OF VISIBLE AND NEAR-INFRARED DIFFUSE REFLECTANCE SPECTRA OF PYROXENES AND OTHER ROCK-FORMING MINERALS , 1975 .

[9]  A. Emslie,et al.  Spectral reflectance and emittance of particulate materials. 2: application and results. , 1973, Applied optics.

[10]  Frank L. Staplin,et al.  SEDIMENTARY ORGANIC MATTER, ORGANIC METAMORPHISM, AND OIL AND GAS OCCURRENCE , 1969 .

[11]  Keith Frye,et al.  The Encyclopedia of Mineralogy , 1981 .

[12]  R. J. Dunham Classification of Carbonate Rocks According to Depositional Textures , 1962 .

[13]  A. N. Lazarev The Dynamics of Crystal Lattices , 1974 .

[14]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[15]  C. E. Weir,et al.  LATTICE FREQUENCIES AND ROTATIONAL BARRIERS FOR INORGANIC CARBONATES AND NITRATES FROM LOW TEMPERATURE INFRARED SPECTROSCOPY , 1962 .

[16]  James K. Crowley,et al.  Visible and near‐infrared spectra of carbonate rocks: Reflectance variations related to petrographic texture and impurities , 1986 .

[17]  R. Singer,et al.  Mars - Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance , 1979 .

[18]  Harry W. Green,et al.  Test ultrastructure of fusulinid Foraminifera , 1980, Nature.

[19]  S. Hook,et al.  Laboratory Reflectance Spectra of 160 Minerals, 0.4 to 2.5 Micrometers , 1992 .

[20]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[21]  Freek D. van der Meer,et al.  Calibration of airborne visible - infrared imaging spectrometer data, AVIRIS to reflectance and mineral mapping in hydrothermal alteration zones : an example from the Cuprite mining district , 1994 .

[22]  John W. Salisbury,et al.  Visible and near infrared spectra of minerals and rocks. II. Carbonates , 1971 .

[23]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[24]  D. B. Nash,et al.  Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite, and ilmenite , 1974 .

[25]  F. D. van der Meer Quantification of grain shape and texture using mathematical morphology and geostatistical techniques , 1994 .

[26]  G. Hunt Visible and near-infrared spectra of minerals and rocks : I silicate minerals , 1970 .

[27]  Jack J. Hsia,et al.  Reflection properties of pressed polytetrafluoroethylene powder , 1981 .

[28]  R. Singer Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides , 1981 .

[29]  S. Gaffey,et al.  Reflectance spectroscopy in the visible and near-infrared (0.35–2.55 µm): Applications in carbonate petrology , 1985 .

[30]  Roger N. Clark,et al.  Water frost and ice - The near-infrared spectral reflectance 0.65-2.5 microns. [observed on natural satellites and other solar system objects , 1981 .

[31]  Frank Matossi Absorption linear polarisierter ultraroter Strahlung im Kalkspat (2 μ –16 μ) , 1928 .

[32]  John F. Mustard,et al.  Quantitative Abundance Estimates From Bidirectional Reflectance Measurements , 1987 .

[33]  John W. Salisbury,et al.  Visible and near infrared spectra of minerals and rocks: IX. Basic and ultrabasic igneous rocks , 1974 .

[34]  Roger D. Aines,et al.  Water in minerals? A peak in the infrared , 1984 .

[35]  Susan Jenks Gaffey Spectral reflectance of carbonate minerals and rocks in the visible and near infrared (0.35 - 2.55 microns) and its applications in carbonate petrology , 1984 .

[36]  Paul E. Johnson,et al.  A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures , 1983 .

[37]  S. Neglia,et al.  The metamorphism of the kerogen from triassic Black Shales, southeast Sicily , 1968 .

[38]  Freek D. van der Meer,et al.  Sequential indicator conditional simulation and indicator kriging applied to discrimination of dolomitization in GER 63-channel imaging spectrometer data , 1994 .

[39]  A. S. Povarennykh The use of infrared spectra for the determination of minerals , 1978 .

[40]  Joseph Veverka,et al.  When are spectral reflectance curves comparable , 1982 .

[41]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[42]  Torrence V. Johnson,et al.  Optical properties of carbonaceous chondrites and their relationship to asteroids , 1973 .

[43]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[44]  A. J. B. Anderson,et al.  Numeric examination of multivariate soil samples , 1971 .

[45]  Roger N. Clark,et al.  Spectral properties of mixtures of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically adsorbed water , 1983 .

[46]  M. D. Craig,et al.  Analysis of aircraft spectrometer data with logarithmic residuals , 1985 .

[47]  James K. Crowley,et al.  Visible and near‐infrared (0.4–2.5 μm) reflectance spectra of Playa evaporite minerals , 1991 .

[48]  B. Hapke,et al.  Bidirectional reflectance spectroscopy: 2. Experiments and observations , 1981 .

[49]  F. D. van der Meer,et al.  Extraction of mineral absorption features from high - spectral resolution data using non - parametric geostatistical techniques , 1994 .

[50]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[51]  S. Gaffey,et al.  Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 um): Anhydrous carbonate minerals , 1987 .

[52]  G. Hunt SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .