Geolocation Assessment of MERIS GlobCover Orthorectified Products

The GlobCover project has developed a service dedicated to the generation of multiyear global land cover maps at 300-m spatial resolution using as its main source of data the full-resolution full-swath (300 m) data (FRS) acquired by the MERIS sensor on-board the ENVISAT satellite. As multiple single daily orbits have to be combined in one single data set, an accurate relative and absolute geolocation of GlobCover orthorectified products is required and needs to be assessed. We describe in this paper the main steps of the orthorectification pre-processing chain as well as the validation methodology and geometric performance assessments. Final results are very satisfactory with an absolute geolocation error of 77-m rms and a relative geolocation error of 51-m rms.

[1]  B. Holben Characteristics of maximum-value composite images from temporal AVHRR data , 1986 .

[2]  Yohay Carmel,et al.  Characterizing location and classification error patterns in time-series thematic maps , 2004, IEEE Geoscience and Remote Sensing Letters.

[3]  C. Tucker,et al.  NASA’s Global Orthorectified Landsat Data Set , 2004 .

[4]  HEIGHTS,et al.  ACE : A NEW GLOBAL DIGITAL ELEVATION MODEL INCORPORATING SATELLITE ALTIMETER DERIVED , 2001 .

[5]  D. Fuster,et al.  VEGETATION geometrical image quality , 2000 .

[6]  Christopher Justice,et al.  The impact of misregistration on change detection , 1992, IEEE Trans. Geosci. Remote. Sens..

[7]  Nianzeng Che,et al.  Terra MODIS on-orbit spatial characterization and performance , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[8]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[9]  David D. Nelson,et al.  Multi-angle geometric processing for globally geo-located and co-registered MISR image data , 2007 .

[10]  José F. Moreno,et al.  A method for accurate geometric correction of NOAA AVHRR HRPT data , 1993, IEEE Trans. Geosci. Remote. Sens..

[11]  D. Roy,et al.  Achieving sub-pixel geolocation accuracy in support of MODIS land science , 2002 .

[12]  J. Townshend,et al.  Global discrimination of land cover types from metrics derived from AVHRR pathfinder data , 1995 .

[13]  John K. Pollard,et al.  Accurate geometric correction of ATSR images , 1997, IEEE Trans. Geosci. Remote. Sens..

[14]  Annick Bricaud,et al.  The POLDER mission: instrument characteristics and scientific objectives , 1994, IEEE Trans. Geosci. Remote. Sens..

[15]  Jordi Inglada,et al.  On the possibility of automatic multisensor image registration , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Siamak Khorram,et al.  The effects of image misregistration on the accuracy of remotely sensed change detection , 1998, IEEE Trans. Geosci. Remote. Sens..

[17]  Konstantin V. Khlopenkov,et al.  Implementation and Evaluation of Concurrent Gradient Search Method for Reprojection of MODIS Level 1B Imagery , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Jean-Louis Roujean,et al.  Sun and view angle corrections on reflectances derived from NOAA/AVHRR data , 1994, IEEE Trans. Geosci. Remote. Sens..

[19]  Jia Zong,et al.  MISR in-flight camera geometric model calibration and georectification performance , 2002, IEEE Trans. Geosci. Remote. Sens..

[20]  Jérôme Théau,et al.  Effect of coregistration error on patchy target detection using high-resolution imagery , 2008 .

[21]  Thomas Meissner,et al.  Geolocation and pointing accuracy analysis for the WindSat sensor , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[22]  David P. Roy,et al.  The impact of misregistration upon composited wide field of view satellite data and implications for change detection , 2000, IEEE Trans. Geosci. Remote. Sens..

[23]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[24]  Thomas A. Hennig,et al.  The Shuttle Radar Topography Mission , 2001, Digital Earth Moving.

[25]  A. Belward,et al.  GLC2000: a new approach to global land cover mapping from Earth observation data , 2005 .

[26]  A. Trishchenko,et al.  Implementation and Evaluation of Concurrent Gradient Search Method for Reprojection of MODIS Level 1 B Imagery , 2008 .

[27]  Aurélie Bouillon,et al.  USING A THREE DIMENSIONAL SPATIAL DATABASE TO ORTHORECTIFY AUTOMATICALLY REMOTE SENSING IMAGES , 2011 .

[28]  Ranga B. Myneni,et al.  The impact of gridding artifacts on the local spatial properties of MODIS data : Implications for validation, compositing, and band-to-band registration across resolutions , 2006 .

[29]  William J. Emery,et al.  Precise AVHRR image navigation , 1994, IEEE Trans. Geosci. Remote. Sens..

[30]  Jordi Inglada,et al.  Analysis of Artifacts in Subpixel Remote Sensing Image Registration , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Christophe Latry,et al.  Validation of an automatic image orthorectification processing , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[32]  G. A. Poe,et al.  A study of the geolocation errors of the Special Sensor Microwave/Imager (SSM/I) , 1990 .

[33]  Nianzeng Che,et al.  Terra MODIS on-orbit spectral characterization and performance , 2005, IEEE Transactions on Geoscience and Remote Sensing.