Jacobian-predictor-corrector approach for fractional differential equations

We present a novel predictor-corrector method, called Jacobian-predictor-corrector approach, for the numerical solutions of fractional ordinary differential equations, which are based on the polynomial interpolation and the Gauss-Lobatto quadrature w.r.t. the Jacobi-weight function $\omega (s)=(1-s)^{\alpha -1} (1+s)^{0}$. This method has the computational cost O(NE) and the convergent order NI, where NE and NI are, respectively, the total computational steps and the number of used interpolation points. The detailed error analysis is performed, and the extensive numerical experiments confirm the theoretical results and show the robustness of this method.

[1]  Weihua Deng,et al.  Smoothness and stability of the solutions for nonlinear fractional differential equations , 2010 .

[2]  Jie Shen,et al.  Optimal Spectral-Galerkin Methods Using Generalized Jacobi Polynomials , 2006, J. Sci. Comput..

[3]  Ben-yu Guo,et al.  Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces , 2004, J. Approx. Theory.

[4]  Wang,et al.  JACOBI PSEUDOSPECTRAL METHOD FOR FOURTH ORDER PROBLEMS , 2006 .

[5]  Ben-yu Guo,et al.  Jacobi interpolation approximations and their applications to singular differential equations , 2001, Adv. Comput. Math..

[6]  C. Lubich,et al.  Runge-Kutta theory for Volterra and Abel integral equations of the second kind , 1983 .

[7]  C. Lubich,et al.  A Stability Analysis of Convolution Quadraturea for Abel-Volterra Integral Equations , 1986 .

[8]  C. Lubich,et al.  Fractional linear multistep methods for Abel-Volterra integral equations of the second kind , 1985 .

[9]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[10]  C. Lubich Discretized fractional calculus , 1986 .

[11]  Neville J. Ford,et al.  The numerical solution of fractional differential equations: Speed versus accuracy , 2001, Numerical Algorithms.

[12]  I. Podlubny Fractional differential equations , 1998 .

[13]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[14]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[15]  Weihua Deng,et al.  Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..

[16]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[17]  Tao Tang,et al.  Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel , 2010, Math. Comput..

[18]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[19]  高等学校計算数学学報編輯委員会編,et al.  高等学校計算数学学報 = Numerical mathematics , 1979 .

[20]  Varsha Daftardar-Gejji,et al.  Analysis of a system of fractional differential equations , 2004 .

[21]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[22]  Weihua Deng,et al.  Short memory principle and a predictor-corrector approach for fractional differential equations , 2007 .

[23]  Guo Ben-yu,et al.  Jacobi interpolation approximations and their applications to singular differential equations , 2001 .

[24]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .