Egalitarian Collective Decision Making under Qualitative Possibilistic Uncertainty: Principles and Characterization

This paper raises the question of collective decision making under possibilistic uncertainty; We study four egalitarian decision rules and show that in the context of a possibilistic representation of uncertainty, the use of an egalitarian collective utility function allows to get rid of the Timing Effect. Making a step further, we prove that if both the agents' preferences and the collective ranking of the decisions satisfy Dubois and Prade's axioms (1995), and particularly risk aversion, and Pareto Unanimity, then the egalitarian collective aggregation is compulsory. This result can be seen as an ordinal counterpart of Harsanyi's theorem (1955).

[1]  Phan Hong Giang,et al.  A Qualitative Linear Utility Theory for Spohn's Theory of Epistemic Beliefs , 2000, UAI.

[2]  Simon Grant,et al.  Weakening the Sure-Thing Principle: Decomposable Choice under Uncertainty , 1997 .

[3]  Didier Dubois,et al.  Decision-theoretic foundations of qualitative possibility theory , 2001, Eur. J. Oper. Res..

[4]  Phan Hong Giang,et al.  A Comparison of Axiomatic Approaches to Qualitative Decision Making Using Possibility Theory , 2001, UAI.

[5]  Didier Dubois,et al.  Possibilistic Logic, Preferential Models, Non-monotonicity and Related Issues , 1991, IJCAI.

[6]  Peter J. Hammond,et al.  Harsanyi’s Utilitarian Theorem: A Simpler Proof and Some Ethical Connotations , 1992 .

[7]  J. Harsanyi Games with Incomplete Information Played by 'Bayesian' Players, Part III. The Basic Probability Distribution of the Game , 1968 .

[8]  Kim C. Border More on Harsanyi's utilitarian cardinal welfare theorem , 1985 .

[9]  Philippe Mongin,et al.  Social choice theory in the case of von Neumann-Morgenstern utilities , 1989 .

[10]  Ronald A. Howard,et al.  Influence Diagrams , 2005, Decis. Anal..

[11]  Marc Fleurbaey,et al.  Social rationality, separability, and equity under uncertainty , 2015, Math. Soc. Sci..

[12]  Judea Pearl,et al.  From Conditional Oughts to Qualitative Decision Theory , 1993, UAI.

[13]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[14]  Fabio Gagliardi Cozman,et al.  Sequential decision making with partially ordered preferences , 2011, Artif. Intell..

[15]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[16]  Abraham Wald,et al.  Statistical Decision Functions , 1951 .

[17]  Thibault Gajdos,et al.  Decisions with conflicting and imprecise information , 2012, Social Choice and Welfare.

[18]  Hélène Fargier,et al.  Qualitative Decision under Uncertainty: Back to Expected Utility , 2003, IJCAI.

[19]  R Bellman,et al.  On the Theory of Dynamic Programming. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[21]  Christopher P. Chambers,et al.  Preference Aggregation With Incomplete Information , 2014 .

[22]  Patrice Perny,et al.  Qualitative Models for Decision Under Uncertainty without the Commensurability Assumption , 1999, UAI.

[23]  Jérôme Lang,et al.  Towards qualitative approaches to multi-stage decision making , 1998, Int. J. Approx. Reason..

[24]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[25]  Didier Dubois,et al.  Qualitative decision theory with preference relations and comparative uncertainty: An axiomatic approach , 2003, Artif. Intell..

[26]  Gildas Jeantet,et al.  Rank-Dependent Probability Weighting in Sequential Decision Problems under Uncertainty , 2008, ICAPS.

[27]  Charles Lumet,et al.  Modélisation, représentation et résolution de problèmes de partage équitable de biens indivisibles soumis au risque , 2012 .

[28]  Marcel K. Richter,et al.  Additive utility , 1991 .

[29]  Phan Hong Giang,et al.  Two axiomatic approaches to decision making using possibility theory , 2005, Eur. J. Oper. Res..

[30]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[31]  Michael Slote,et al.  Weighing Goods: Equality, Uncertainty and Time , 2009 .

[32]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[33]  Lotfi A. Zadeh,et al.  A Theory of Approximate Reasoning , 1979 .

[34]  Didier Dubois,et al.  Making Decision in a Qualitative Setting: from Decision under Uncertaintly to Case-based Decision , 1998, KR.

[35]  Peter J. Hammond,et al.  On Reconciling Arrow’s Theory of Social Choice with Harsanyi’s Fundamental Utilitarianism , 1987 .

[36]  Didier Dubois,et al.  Qualitative decision theory: from savage's axioms to nonmonotonic reasoning , 2002, JACM.

[37]  Joseph B. Kadane,et al.  You have printed the following article : On the Shared Preferences of Two Bayesian Decision Makers , 2008 .

[38]  P. Mongin Consistent Bayesian Aggregation , 1995 .

[39]  Didier Dubois,et al.  Possibility Theory as a Basis for Qualitative Decision Theory , 1995, IJCAI.

[40]  Nic Wilson,et al.  An Order of Magnitude Calculus , 1995, UAI.

[41]  Jonathan P. How,et al.  Decision Making Under Uncertainty: Theory and Application , 2015 .

[42]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[43]  Didier Dubois,et al.  The Use of the Discrete Sugeno Integral in Decision-Making: A Survey , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[44]  John A. Weymark,et al.  Interpersonal Comparisons of Well-being: A reconsideration of the Harsanyi–Sen debate on utilitarianism , 1991 .

[45]  H. Moulin Axioms of Cooperative Decision Making , 1988 .

[46]  Peter A. Diamond,et al.  Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparison of Utility: Comment , 1967, Journal of Political Economy.

[47]  Philippe Mongin,et al.  A welfarist version of Harsanyi's aggregation theorem , 2008 .

[48]  Howard Raiffa,et al.  Decision analysis: introductory lectures on choices under uncertainty. 1968. , 1969, M.D.Computing.

[49]  Thibault Gajdos,et al.  Representation and aggregation of preferences under uncertainty , 2008, J. Econ. Theory.

[50]  Prakash P. Shenoy,et al.  Valuation-Based Systems for Bayesian Decision Analysis , 1992, Oper. Res..

[51]  Richard J. Zeckhauser,et al.  The Impossibility of Bayesian Group Decision Making with Separate Aggregation of Beliefs and Values , 1979 .

[52]  Nahla Ben Amor,et al.  On the Complexity of Decision Making in Possibilistic Decision Trees , 2011, UAI.

[53]  Yacov Y. Haimes,et al.  Influence diagrams with multiple objectives and tradeoff analysis , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[54]  R. Bellman A Markovian Decision Process , 1957 .

[55]  J. Harsanyi Games with Incomplete Information Played by “Bayesian” Players Part II. Bayesian Equilibrium Points , 1968 .

[56]  Didier Dubois,et al.  The treatment of uncertainty in knowledge‐based systems using fuzzy sets and possibility theory , 1988, Int. J. Intell. Syst..

[57]  J. Kacprzyk,et al.  The Ordered Weighted Averaging Operators: Theory and Applications , 1997 .

[58]  Nahla Ben Amor,et al.  Possibilistic sequential decision making , 2014, Int. J. Approx. Reason..

[59]  Thomas Whalen,et al.  Decisionmaking under uncertainty with various assumptions about available information , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[60]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[61]  Didier Dubois,et al.  A Survey of Qualitative Decision Rules under Uncertainty , 2010, Decision-making Process.

[62]  Henri Prade,et al.  Decision-Making Process: Concepts and Methods , 2009 .

[63]  Lurdes Y. T. Inoue,et al.  Decision Theory: Principles and Approaches , 2009 .

[64]  Didier Dubois,et al.  Qualitative Decision Theory with Sugeno Integrals , 1998, UAI.

[65]  Yoav Shoham,et al.  Bayesian Coalitional Games , 2008, AAAI.

[66]  Didier Dubois,et al.  Weighted minimum and maximum operations in fuzzy set theory , 1986, Inf. Sci..

[67]  Nahla Ben Amor,et al.  Décision collective sous incertitude possibiliste. Principes et axiomatisation , 2015, Rev. d'Intelligence Artif..

[68]  G. Debreu Topological Methods in Cardinal Utility Theory , 1959 .

[69]  Dov Samet,et al.  Utilitarian Aggregation of Beliefs and Tastes , 2004, Journal of Political Economy.

[70]  J. Quiggin A theory of anticipated utility , 1982 .

[71]  Roger B. Myerson,et al.  Utilitarianism, Egalitarianism, and the Timing Effect in Social Choice Problems , 1981 .

[72]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[73]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[74]  Toby Walsh,et al.  Winner determination in voting trees with incomplete preferences and weighted votes , 2011, Autonomous Agents and Multi-Agent Systems.

[75]  Philippe Mongin,et al.  The paradox of the Bayesian experts and state-dependent utility theory , 1998 .

[76]  Didier Dubois,et al.  An Introductory Survey of Possibility Theory and Its Recent Developments , 1998 .

[77]  Paul Weng,et al.  An Axiomatic Approach in Qualitative Decision Theory with Binary Possibilistic Utility , 2006, ECAI.

[78]  G. Choquet Theory of capacities , 1954 .

[79]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[80]  Claude d'Aspremont,et al.  Utility theory and ethics , 1996 .

[81]  D. Bernoulli Exposition of a New Theory on the Measurement of Risk , 1954 .

[82]  Paul Weng,et al.  Qualitative Decision Making Under Possibilistic Uncertainty: Toward more Discriminating Criteria , 2005, UAI.

[83]  Stéphane Zuber,et al.  Harsanyi's theorem without the sure-thing principle: On the consistent aggregation of Monotonic Bernoullian and Archimedean preferences , 2016 .

[84]  Jean-Luc Marichal,et al.  An axiomatic approach of the discrete Sugeno integral as a tool to aggregate interacting criteria in a qualitative framework , 2001, IEEE Trans. Fuzzy Syst..

[85]  Uzi Segal,et al.  The measure representation: A correction , 1993 .

[86]  Zoltan Domotor,et al.  Ordered sum and tensor product of linear utility structures , 1979 .

[87]  J. Harsanyi Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons of Utility , 1955 .

[88]  M. Fleming,et al.  A Cardinal Concept of Welfare , 1952 .

[89]  Régis Sabbadin,et al.  Possibilistic Influence Diagrams , 2006, ECAI.

[90]  Nicholas Mattei,et al.  Decision Making under Uncertainty: Social Choice and Manipulation , 2011, IJCAI.

[91]  Peter J. Hammond,et al.  Ex-ante and Ex-post Welfare Optimality under Uncertainty , 1981 .

[92]  Simon Grant,et al.  Decomposable Choice under Uncertainty , 2000, J. Econ. Theory.

[93]  J. Schreiber Foundations Of Statistics , 2016 .

[94]  R. M. Adelson,et al.  Utility Theory for Decision Making , 1971 .

[95]  Philippe Mongin,et al.  A note on affine aggregation , 1995 .

[96]  K. Arrow A Difficulty in the Concept of Social Welfare , 1950, Journal of Political Economy.

[97]  Nic Wilson,et al.  Multi-objective Influence Diagrams , 2012, UAI.

[98]  John C. Harsanyi,et al.  Games with Incomplete Information Played by "Bayesian" Players, I-III: Part I. The Basic Model& , 2004, Manag. Sci..

[99]  W. M. Gorman The Structure of Utility Functions , 1968 .

[100]  Peter C. Fishburn,et al.  On Harsanyi's utilitarian cardinal welfare theorem , 1984 .

[101]  Jérôme Lang,et al.  Voting procedures with incomplete preferences , 2005 .

[102]  Nahla Ben Amor,et al.  Solving Multi-criteria Decision Problems under Possibilistic Uncertainty Using Optimistic and Pessimistic Utilities , 2014, IPMU.

[103]  Christopher P. Chambers,et al.  Preference aggregation under uncertainty: Savage vs. Pareto , 2006, Games Econ. Behav..

[104]  Régis Sabbadin,et al.  Possibilistic Markov decision processes , 2001 .