Digital optics

The authors discuss digital optics, a technology for processing, transport, and storage of optical digital information. Digital optics offers both the high temporal bandwidth of fiber communications and the high connectivity and information density of optical imaging. The energy dissipation per bit of communicated information, as well as the chip area dedicated to interconnections, can be significantly lower in optics than in high-speed electronics. This motivates the introduction of parallel optical interconnections through free space in communication-intensive areas of digital information processing such as switching in telecommunications and within multiprocessors. Digital optical circuits can be constructed by cascading two-dimensional planar arrays of optical logic gates interconnected in free space. The state of the art and the trends in digital optical information processing systems for optical logic, optoelectronic interfaces, and optical free-space interconnection systems are reviewed. >

[1]  B Sugla,et al.  Design for an optical random access memory. , 1989, Applied optics.

[2]  M. J. O'Mahony,et al.  15 – OPTICAL BISTABILITY IN SEMICONDUCTOR LASER AMPLIFIERS , 1988 .

[3]  A Huang,et al.  Planar integration of free-space optical components. , 1989, Applied optics.

[4]  R A Athale,et al.  Folded perfect shuffle optical processor. , 1988, Applied optics.

[5]  H. M. Gibbs,et al.  Conditions and Limitations in Intrinsic Optical Bistability , 1981 .

[6]  H. S. Hinton,et al.  Symmetric self‐electro‐optic effect device: Optical set‐reset latch , 1988 .

[7]  Jürgen Jahns,et al.  Array generation with multilevel phase gratings , 1990 .

[8]  A Huang,et al.  Optical design of programmable logic arrays. , 1988, Applied optics.

[9]  M. E. Prise,et al.  Dammann Gratings For Laser Beam Shaping , 1989 .

[10]  G. Stucke A complete 2D-Shuffle/exchange-stage for large 1D data arrays , 1988 .

[11]  D. Miller,et al.  Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. , 1989, Optics letters.

[12]  F Sauer,et al.  Fabrication of diffractive-reflective optical interconnects for infrared operation based on total internal reflection. , 1989, Applied optics.

[13]  N. Streibl,et al.  Digital Optics: Architecture and Systems Requirements , 1988 .

[14]  M. E. Prise,et al.  Free-space optical interconnection scheme. , 1990, Applied optics.

[15]  D M Bloom,et al.  Reduction of timing fluctuations in a mode-locked Nd:YAG laser by electronic feedback. , 1986, Optics letters.

[16]  Teiji Uchida,et al.  Optical characteristics of a light-focusing fiber guide and its applications , 1970 .

[17]  Adolf W. Lohmann,et al.  Optical Interconnection Network Utilizing Diffraction Gratings , 1988 .

[18]  James R. Leger,et al.  Astigmatic Wavefront Correction Of A Gain-Guided Laser Diode Array Using Anamorphic Diffractive Microlenses , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[19]  T. E. Bell,et al.  Optical computing: A field in flux , 1986, IEEE Spectrum.

[20]  A. H. Firester,et al.  Fabrication of planar optical phase elements , 1973 .

[21]  T B Henderson,et al.  Modified signed-digit addition and subtraction using optical symbolic substitution. , 1986, Applied optics.

[22]  R. A. Falk,et al.  Optical arithmetic/logic unit based on residue arithmetic and symbolic substitution. , 1988, Applied optics.

[23]  H. Morkoç,et al.  AlGaAs/GaAs multiple quantum well reflection modulators grown on Si substrates , 1988 .

[24]  Karl-Heinz Brenner,et al.  Symbolic Substitution Implemented By Spatial Filtering Logic , 1989 .

[25]  Frederick B. McCormick,et al.  DESIGN OF AN OPTICAL DIGITAL COMPUTER , 1988 .

[26]  K. Iga,et al.  Stacked planar optics: an application of the planar microlens. , 1982, Applied optics.

[27]  R W Keyes,et al.  Thermal limitations in optical logic. , 1969, Applied optics.

[28]  W Stork,et al.  Optical perfect shuffle. , 1986, Applied optics.

[29]  F.J. Leonberger,et al.  Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.

[30]  H. Dammann,et al.  High-efficiency in-line multiple imaging by means of multiple phase holograms , 1971 .

[31]  Kenichi Kasahara,et al.  Double heterostructure optoelectronic switch as a dynamic memory with low-power consumption , 1988 .

[32]  K H Brenner New implementation of symbolic substitution logic. , 1986, Applied optics.

[33]  K. Brenner,et al.  Diffractive-reflective optical interconnects. , 1988, Applied optics.

[34]  D. Miller,et al.  Multiple quantum well reflection modulator , 1987 .

[35]  M.D. Feuer,et al.  Field-effect transistor self-electrooptic effect device: integrated photodiode, quantum well modulator and transistor , 1989, IEEE Photonics Technology Letters.

[36]  M. Marhic,et al.  Hierarchic and combinatorial star couplers. , 1984, Optics letters.

[37]  Karl-Heinz Brenner,et al.  Digital optical computing with symbolic substitution. , 1986 .

[38]  W T Rhodes,et al.  Symbolic substitution applications to image processing. , 1988, Applied optics.

[39]  M. M. Downs,et al.  Optical considerations in the design of digital optical computers , 1988 .

[40]  Gerard Mourou,et al.  Synchronization of a mode-locked Nd:YAG — Argon ion laser system , 1981 .

[41]  A. Lohmann What classical optics can do for the digital optical computer. , 1986, Applied optics.

[42]  T J Cloonan Performance analysis of optical symbolic substitution. , 1988, Applied optics.

[43]  G. W. Taylor,et al.  Optically induced switching in a p-channel double heterostructure optoelectronic switch , 1986 .

[44]  Theodore Sizer,et al.  Neodymium lasers as a source of synchronized high-power optical pulses , 1988 .

[45]  K H Brenner,et al.  Optical implementations of the perfect shuffle interconnection. , 1988, Applied optics.

[46]  A. Huang,et al.  Architectural considerations involved in the design of an optical digital computer , 1984, Proceedings of the IEEE.

[47]  Gerard Mourou,et al.  Synchronous amplification of subpicosecond pulses , 1983 .

[48]  Kam Y. Lau,et al.  Ultimate limit in low threshold quantum well GaAlAs semiconductor lasers , 1988 .

[49]  K H Brenner Programmable optical processor based on symbolic substitution. , 1988, Applied optics.

[50]  K H Brenner,et al.  Optical symbolic substitution: system design using phase-only holograms. , 1988, Applied optics.

[51]  Jürgen Jahns,et al.  Multilevel Phase Structures For Array Generation , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[52]  A. Gossard,et al.  GaAs-AlAs monolithic microresonater arrays , 1987 .

[53]  J Jahns,et al.  Crossover networks and their optical implementation. , 1988, Applied optics.

[54]  J. P. Harbison,et al.  High-finesse (Al,Ga)As interference filters grown by molecular beam epitaxy , 1988 .

[55]  K.-H. Brenner,et al.  Architectures For Digital Optical Image Processing Using Morphological Filters , 1989, Other Conferences.

[56]  D Casasent,et al.  Optical symbolic substitution using multichannel correlators. , 1988, Applied optics.

[57]  Yong-Hee Lee,et al.  Vertical Cavity Single-Quantum-Well Laser , 1989, Photonic Switching.