Immersed Boundary Smooth Extension (IBSE): A high-order method for solving incompressible flows in arbitrary smooth domains

Abstract The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet for fluid problems it only achieves first-order spatial accuracy near embedded boundaries for the velocity field and fails to converge pointwise for elements of the stress tensor. In a previous work we introduced the Immersed Boundary Smooth Extension (IBSE) method, a variation of the IB method that achieves high-order accuracy for elliptic PDE by smoothly extending the unknown solution of the PDE from a given smooth domain to a larger computational domain, enabling the use of simple Cartesian-grid discretizations. In this work, we extend the IBSE method to allow for the imposition of a divergence constraint, and demonstrate high-order convergence for the Stokes and incompressible Navier–Stokes equations: up to third-order pointwise convergence for the velocity field, and second-order pointwise convergence for all elements of the stress tensor. The method is flexible to the underlying discretization: we demonstrate solutions produced using both a Fourier spectral discretization and a standard second-order finite-difference discretization.

[1]  Mark Lyon,et al.  High-order unconditionally stable FC-AD solvers for general smooth domains I. Basic elements , 2010, J. Comput. Phys..

[2]  Z. Jane Wang,et al.  An immersed interface method for simulating the interaction of a fluid with moving boundaries , 2006, J. Comput. Phys..

[3]  Robert Michael Kirby,et al.  A Study of Different Modeling Choices For Simulating Platelets Within the Immersed Boundary Method , 2012, Applied numerical mathematics : transactions of IMACS.

[4]  James Demmel,et al.  LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.

[5]  F. John Partial differential equations , 1967 .

[6]  F. Harlow,et al.  THE MAC METHOD-A COMPUTING TECHNIQUE FOR SOLVING VISCOUS, INCOMPRESSIBLE, TRANSIENT FLUID-FLOW PROBLEMS INVOLVING FREE SURFACES , 1965 .

[7]  N. Phan-Thien,et al.  Galerkin/least-square finite-element methods for steady viscoelastic flows , 1999 .

[8]  N. Phan-Thien,et al.  The flow of an Oldroyd-B fluid past a cylinder in a channel: adaptive viscosity vorticity (DAVSS-ω) formulation , 1999 .

[9]  Fernando T. Pinho,et al.  The flow of viscoelastic fluids past a cylinder : finite-volume high-resolution methods , 2001 .

[10]  S. H. Lui,et al.  Spectral domain embedding for elliptic PDEs in complex domains , 2009 .

[11]  Zhilin Li,et al.  The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (Frontiers in Applied Mathematics) , 2006 .

[12]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[13]  Charles S. Peskin,et al.  Tether Force Constraints in Stokes Flow by the Immersed Boundary Method on a Periodic Domain , 2009, SIAM J. Sci. Comput..

[14]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[15]  Robert D. Guy,et al.  Immersed boundary smooth extension: A high-order method for solving PDE on arbitrary smooth domains using Fourier spectral methods , 2015, J. Comput. Phys..

[16]  D. Shirokoff,et al.  A Sharp-Interface Active Penalty Method for the Incompressible Navier–Stokes Equations , 2013, J. Sci. Comput..

[17]  B. Griffith,et al.  An immersed boundary method for rigid bodies , 2014, 1505.07865.

[18]  Alfonso Bueno-Orovio Fourier embedded domain methods: Periodic and Cinfinity extension of a function defined on an irregular region to a rectangle via convolution with Gaussian kernels , 2006, Appl. Math. Comput..

[19]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[20]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[21]  Mark Lyon,et al.  High-order unconditionally stable FC-AD solvers for general smooth domains II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations , 2010, J. Comput. Phys..

[22]  Xiaolin Zhong,et al.  A new high-order immersed interface method for solving elliptic equations with imbedded interface of discontinuity , 2007, J. Comput. Phys..

[23]  Lloyd N. Trefethen,et al.  Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples , 2011, SIAM Rev..

[24]  Willem Hundsdorfer,et al.  IMEX extensions of linear multistep methods with general monotonicity and boundedness properties , 2007, J. Comput. Phys..

[25]  Yoichiro Mori Convergence proof of the velocity field for a stokes flow immersed boundary method , 2008 .

[26]  V. G. Ferreira,et al.  The MAC method , 2008 .

[27]  M. Lai,et al.  An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity , 2000 .

[28]  S. Balachandar,et al.  Immersed boundary method with non-uniform distribution of Lagrangian markers for a non-uniform Eulerian mesh , 2016, J. Comput. Phys..

[29]  John P. Boyd Fourier embedded domain methods: extending a function defined on an irregular region to a rectangle so that the extension is spatially periodic and C∞ , 2005, Appl. Math. Comput..

[30]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[31]  Nathan Albin,et al.  A spectral FC solver for the compressible Navier-Stokes equations in general domains I: Explicit time-stepping , 2011, J. Comput. Phys..

[32]  H. Fasel,et al.  A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains , 2005 .

[33]  Zhoushun Zheng,et al.  Efficient high-order immersed interface methods for heat equations with interfaces , 2014 .

[34]  Tim Colonius,et al.  The immersed boundary method: A projection approach , 2007, J. Comput. Phys..

[35]  Timothy Nigel Phillips,et al.  Viscoelastic flow around a confined cylinder using spectral/hp element methods , 2013 .

[36]  H. Brinkman A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles , 1949 .

[37]  R. Fedkiw,et al.  A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem , 2005 .

[38]  Philippe Angot,et al.  A penalization method to take into account obstacles in incompressible viscous flows , 1999, Numerische Mathematik.

[39]  Boyce E. Griffith,et al.  Hybrid finite difference/finite element version of the immersed boundary method , 2012 .

[40]  Guo-Wei Wei,et al.  Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces , 2007, J. Comput. Phys..

[41]  David Bradley Stein The Immersed Boundary Smooth Extension (IBSE) Method: A Flexible and Accurate Fictitious Domain Method, and Applications to the Study of Polymeric Flow in Complex Geometries , 2016 .

[42]  Andreas Mark,et al.  Derivation and validation of a novel implicit second-order accurate immersed boundary method , 2008, J. Comput. Phys..

[43]  Feriedoun Sabetghadam,et al.  Fourier spectral embedded boundary solution of the Poisson's and Laplace equations with Dirichlet boundary conditions , 2009, J. Comput. Phys..

[44]  Shan Zhao,et al.  High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources , 2006, J. Comput. Phys..

[45]  Ronald Fedkiw,et al.  The immersed interface method. Numerical solutions of PDEs involving interfaces and irregular domains , 2007, Math. Comput..

[46]  Boyce E. Griffith,et al.  Efficient Variable-Coefficient Finite-Volume Stokes Solvers , 2013, 1308.4605.