Organic field-effect transistors using single crystals

Abstract Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for ‘plastic electronics’. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

[1]  Y. Tokura,et al.  Control of film morphology and its effects on subthreshold characteristics in dibenzotetrathiafulvalene organic thin-film transistors , 2008 .

[2]  Alessandro Troisi,et al.  Charge-transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder. , 2006, Physical review letters.

[3]  C. Rovira,et al.  Correlation between crystal structure and mobility in organic field-effect transistors based on single crystals of tetrathiafulvalene derivatives. , 2004, Journal of the American Chemical Society.

[4]  Y. Aoyagi,et al.  Direct observation of contact and channel resistance in pentacene four-terminal thin-film transistor patterned by laser ablation method , 2004 .

[5]  S. Seki,et al.  Electronic functionalization of solid-to-liquid interfaces between organic semiconductors and ionic liquids: Realization of very high performance organic single-crystal transistors , 2008 .

[6]  C. Rovira,et al.  Single-crystal organic field-effect transistors based on dibenzo-tetrathiafulvalene , 2005 .

[7]  K. Ishikawa,et al.  Organic Field-effect Transistor Based on Biphenyl Substituted TTF , 2005 .

[8]  Hagen Klauk,et al.  Organic electronics : materials, manufacturing and applications , 2006 .

[9]  B. Batlogg,et al.  Hole mobility in organic single crystals measured by a flip-crystal field-effect technique , 2004 .

[10]  T. Someya,et al.  Hall effect measurements using polycrystalline pentacene field-effect transistors on plastic films , 2006 .

[11]  Antonio Facchetti,et al.  Solution Processed Top‐Gate n‐Channel Transistors and Complementary Circuits on Plastics Operating in Ambient Conditions , 2008 .

[12]  V. Podzorov,et al.  Effect of interfacial shallow traps on polaron transport at the surface of organic semiconductors. , 2006, Physical review letters.

[13]  Yoshihiro Iwasa,et al.  Ambipolar organic field-effect transistors based on rubrene single crystals , 2006 .

[14]  H. Koinuma,et al.  High-performance organic field-effect transistors based on pi-extended tetrathiafulvalene derivatives. , 2005, Journal of the American Chemical Society.

[15]  Shizuo Tokito,et al.  Significant improvement of electron mobility in organic thin-film transistors based on thiazolothiazole derivative by employing self-assembled monolayer , 2007 .

[16]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[17]  Zhenan Bao,et al.  Air-stable n-channel organic thin-film transistors with high field-effect mobility based on N,N′-bis(heptafluorobutyl)-3,4:9,10-perylene diimide , 2007 .

[18]  B. Batlogg,et al.  Ambipolar field-effect carrier injections in organic Mott insulators , 2004 .

[19]  T. Lodge,et al.  High‐Capacitance Ion Gel Gate Dielectrics with Faster Polarization Response Times for Organic Thin Film Transistors , 2008 .

[20]  Y. Yamashita,et al.  High performance n- and p-type field-effect transistors based on tetrathiafulvalene derivatives. , 2006, Journal of the American Chemical Society.

[21]  J A Rogers,et al.  Intrinsic charge transport on the surface of organic semiconductors. , 2004, Physical review letters.

[22]  V. M. Pudalov,et al.  Single-crystal organic field effect transistors with the hole mobility ∼8 cm2/V s , 2003 .

[23]  T. Takenobu,et al.  Effect of postannealing on the performance of pentacene single-crystal ambipolar transistors , 2008 .

[24]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals and Polymers , 1999 .

[25]  Arno F. Stassen,et al.  Organic small molecule field-effect transistors with Cytop™ gate dielectric: Eliminating gate bias stress effects , 2007 .

[26]  C. Rovira,et al.  High mobility of dithiophene-tetrathiafulvalene single-crystal organic field effect transistors. , 2004, Journal of the American Chemical Society.

[27]  Matthew J. Panzer,et al.  Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric , 2005 .

[28]  Alan B. Fowler,et al.  Electronic Genie: THE TANGLED HISTORY OF SILICON , 1997 .

[29]  Evidence of water-related discrete trap state formation in pentacene single-crystal field-effect transistors , 2005, cond-mat/0508607.

[30]  Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors , 2004, cond-mat/0407293.

[31]  Koichi M. T. Yamada,et al.  Effect of Molecular Packing on Field-Effect Performance of Single Crystals of Thienyl-Substituted Pyrenes , 2008 .

[32]  Robin D. Rogers,et al.  Ionic liquids : industrial applications for green chemistry , 2002 .

[33]  Koichi M. T. Yamada,et al.  Effects of gate dielectrics and metal electrodes on air-stable n-channel perylene tetracarboxylic dianhydride single-crystal field-effect transistors , 2008 .

[34]  A. Morpurgo,et al.  Tunable Fröhlich polarons in organic single-crystal transistors , 2006, Nature materials.

[35]  J. Rogers,et al.  High‐Performance n‐ and p‐Type Single‐Crystal Organic Transistors with Free‐Space Gate Dielectrics , 2004 .

[36]  Yoshihiro Iwasa,et al.  Ambipolar Light‐Emitting Transistors of a Tetracene Single Crystal , 2007 .

[37]  Kazuhito Tsukagoshi,et al.  High-density electrostatic carrier doping in organic single-crystal transistors with polymer gel electrolyte , 2006 .

[38]  K. Kudo,et al.  Ambipolar field-effect transistor characteristics of (BEDT-TTF)(TCNQ) crystals and metal-like conduction induced by a gate electric field , 2007 .

[39]  Effects of polarized organosilane self-assembled monolayers on organic single-crystal field-effect transistors , 2004, cond-mat/0407407.

[40]  Jiyoul Lee,et al.  Ion gel gated polymer thin-film transistors. , 2007, Journal of the American Chemical Society.

[41]  Y. Tokura,et al.  Organic metal electrodes for controlled p- and n-type carrier injections in organic field-effect transistors , 2006 .

[42]  Gilles Horowitz,et al.  Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors , 2000 .

[43]  V. M. Pudalov,et al.  Field-effect transistors on rubrene single crystals with parylene gate insulator , 2003 .

[44]  C. Rovira,et al.  Tetrathiafulvalene derivatives for organic field effect transistors , 2006 .

[45]  T. Hasegawa,et al.  Suppression of rectification at metal-Mott insulator interfaces , 2007, 0710.5586.

[46]  Y. Aoyagi,et al.  In-crystal and surface charge transport of electric-field-induced carriers in organic single-crystal semiconductors. , 2007, Physical review letters.

[47]  John A. Weil,et al.  Electron paramagnetic resonance : elementary theory and practical applications , 1995 .

[48]  Y. Tokura,et al.  High Mobility Organic Field-Effect Transistor Based on Hexamethylenetetrathiafulvalene with Organic Metal Electrodes , 2007 .

[49]  T. Takenobu,et al.  Spatial extent of wave functions of gate-induced hole carriers in pentacene field-effect devices as investigated by electron spin resonance. , 2006, Physical review letters.

[50]  H. Kuroda,et al.  Polarized Absorption Spectra of the TCNQ Crystal , 1970 .

[51]  Yang Yang,et al.  Patterning organic single-crystal transistor arrays , 2006, Nature.

[52]  J. Takeya,et al.  Gate dielectric materials for high-mobility organic transistors of molecular semiconductor crystals , 2007 .

[53]  H. Matsui,et al.  Direct Observation of Field-Induced Carrier Dynamics in Pentacene Thin-Film Transistors by Electron Spin Resonance Spectroscopy , 2009 .

[54]  R. Cava,et al.  Intrinsic electronic transport properties of organic field-effect transitors based on single crystalline tetramethyltetraselenafulvalene , 2003 .

[55]  Giuseppe Grosso,et al.  Organic Electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids , 2001 .

[56]  T. M. Klapwijk,et al.  Field-effect transistors on tetracene single crystals , 2003 .

[57]  Dunlap,et al.  Unified theory of the mobilities of photoinjected electrons in naphthalene. , 1989, Physical review letters.

[58]  Richard H. Friend,et al.  General observation of n-type field-effect behaviour in organic semiconductors , 2005, Nature.

[59]  H. Kobayashi,et al.  The Crystal Structure of the Charge-transfer Complex of Dibenzotetrathiafulvalene-Tetracyanoquinodimethane, DBTTF–TCNQ , 1981 .

[60]  Ute Zschieschang,et al.  High-mobility polymer gate dielectric pentacene thin film transistors , 2002 .

[61]  Y. Aoyagi,et al.  Hall Effect of Quasi-Hole Gas in Organic Single-Crystal Transistors , 2005, cond-mat/0511188.

[62]  Bertram Batlogg,et al.  Determination of the interface trap density of rubrene single-crystal field-effect transistors and comparison to the bulk trap density , 2006 .

[63]  K. Ishikawa,et al.  Contact resistance of dibenzotetrathiafulvalene-based organic transistors with metal and organic electrodes , 2008 .

[64]  Y. Tokura,et al.  Polaron motional narrowing of electron spin resonance in organic field-effect transistors. , 2008, Physical review letters.

[65]  Haruhiko Asanuma,et al.  Electrolyte-gated charge accumulation in organic single crystals , 2006 .

[66]  E. A. Silinsh,et al.  Organic Molecular Crystals , 1980 .

[67]  Y. Tokura,et al.  Tuning of electron injections for n-type organic transistor based on charge-transfer compounds , 2005 .

[68]  Koichi M. T. Yamada,et al.  Single-crystal field-effect transistors of benzoannulated fused oligothiophenes and oligoselenophenes , 2007 .

[69]  Y. Aoyagi,et al.  Molecular-packing-enhanced charge transport in organic field-effect transistors based on semiconducting porphyrin crystals , 2007 .

[70]  K. Yonemitsu Mechanism of Ambipolar Field-Effect Carrier Injections in One-Dimensional Mott Insulators , 2005, cond-mat/0506689.

[71]  Oana D. Jurchescu,et al.  Interface‐Controlled, High‐Mobility Organic Transistors , 2007 .

[72]  Adam R. C. Brown,et al.  Organic n-type field-effect transistor , 1994 .

[73]  Shizuo Tokito,et al.  High air stability of threshold voltage on gate bias stress in pentacene TFTs with a hydroxyl-free and amorphous fluoropolymer as gate insulators , 2008 .

[74]  J. Rogers,et al.  Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals , 2004, Science.

[75]  B. Batlogg,et al.  Field-induced charge transport at the surface of pentacene single crystals: A method to study charge dynamics of two-dimensional electron systems in organic crystals , 2003 .

[76]  Shimpei Ono,et al.  High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids , 2008 .

[77]  Yoshihiro Iwasa,et al.  Effect of metal electrodes on rubrene single-crystal transistors , 2007 .

[78]  Zhenan Bao,et al.  High-performance microscale single-crystal transistors by lithography on an elastomer dielectric , 2006 .

[79]  Takeo Kawase,et al.  Very high-mobility organic single-crystal transistors with in-crystal conduction channels , 2007 .

[80]  Koichi M. T. Yamada,et al.  Charge transport of copper phthalocyanine single-crystal field-effect transistors stable above 100°C , 2006 .

[81]  Zhenan Bao,et al.  Organic Field-Effect Transistors , 2007 .

[82]  A. Kobayashi,et al.  (nBu4N)[Ni(dmstfdt)2]: A Planar Nickel Coordination Complex with an Extended-TTF Ligand Exhibiting Metallic Conduction, Metal−Insulator Transition, and Weak Ferromagnetism , 2007 .

[83]  K. Tsukagoshi,et al.  Strain-induced superconductor/insulator transition and field effect in a thin single crystal of molecular conductor , 2008 .

[84]  J. Takeya,et al.  Fabrication of high-mobility organic single-crystal field-effect transistors with amorphous fluoropolymer gate insulators , 2008 .

[85]  J A Rogers,et al.  Hall effect in the accumulation layers on the surface of organic semiconductors. , 2005, Physical review letters.

[86]  J. Takeya,et al.  Air-stable n-channel single-crystal transistors with negligible threshold gate voltage , 2009 .

[87]  Theo Siegrist,et al.  Single-crystal field-effect transistors based on copper phthalocyanine , 2005 .

[88]  M. F. Craciun,et al.  Ambipolar Cu- and Fe-phthalocyanine single-crystal field-effect transistors , 2005 .