Discrete dynamics and non-Markovianity

We study discrete quantum dynamics where single evolution step consists of unitary system transformation followed by decoherence via coupling to an environment. Often non-Markovian memory effects are attributed to structured environments whereas here we take a more general approach within discrete setting. In addition of controlling the structure of the environment, we are interested in how local unitaries on the open system allow the appearance and control of memory effects. Our first simple qubit model, where local unitary is followed by dephasing, illustrates how memory effects arise despite of having no-structure in the environment the system is coupled with. We then elaborate this observation by constructing a model for open quantum walk where the unitary coin and transfer operation is augmented with dephasing of the coin. The results demonstrate that in the limit of strong dephasing within each evolution step, the combined coin-position open system always displays memory effects and their quantity is independent of the structure of the environment. Our construction makes possible an experimentally realizable open quantum walk with photons exhibiting non-Markovian features.

[1]  T. Heinosaari,et al.  The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement , 2012 .

[2]  Dieter Meschede,et al.  Quantum Walk in Position Space with Single Optically Trapped Atoms , 2009, Science.

[3]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[4]  Zhong-Xiao Man,et al.  Cavity-based architecture to preserve quantum coherence and entanglement , 2015, Scientific Reports.

[5]  Elsi-Mari Laine,et al.  Markovianity and non-Markovianity in quantum and classical systems , 2011, 1106.0138.

[6]  G. Vallone,et al.  Two-particle bosonic-fermionic quantum walk via integrated photonics. , 2011, Physical review letters.

[7]  Neil B. Lovett,et al.  Universal quantum computation using the discrete-time quantum walk , 2009, 0910.1024.

[8]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[9]  Andris Ambainis,et al.  Quantum random walks with decoherent coins , 2003 .

[10]  F. Petruccione,et al.  Open Quantum Random Walks , 2012, 1402.3253.

[11]  Will Flanagan,et al.  Controlling discrete quantum walks: coins and initial states , 2003 .

[12]  S. Wissmann,et al.  Optimal state pairs for non-Markovian quantum dynamics , 2012, 1209.4989.

[13]  Viv Kendon,et al.  Decoherence vs entanglement in coined quantum walks , 2008 .

[14]  M. Lewenstein,et al.  Observation of topological structures in photonic quantum walks , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[15]  D. Petz,et al.  Contractivity of positive and trace-preserving maps under Lp norms , 2006, math-ph/0601063.

[16]  Rosario Lo Franco,et al.  Harnessing non-Markovian quantum memory by environmental coupling , 2015, 1506.08293.

[17]  Viv Kendon,et al.  Decoherence versus entanglement in coined quantum walks , 2006, quant-ph/0612229.

[18]  Leonardo Ermann,et al.  Decoherence induced by a chaotic enviroment: A quantum walker with a complex coin , 2006 .

[19]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[20]  F. Brito,et al.  A knob for Markovianity , 2014, 1404.2502.

[21]  Howard Barnum,et al.  Quantum information processing , operational quantum logic , convexity , and the foundations of physics Los Alamos Technical Report LAUR 03-1199 , 2022 .

[22]  Andris Ambainis,et al.  Quantum to classical transition for random walks. , 2003, Physical review letters.

[23]  Tzyh Jong Tarn,et al.  Decoherence suppression via non-Markovian coherent feedback control , 2012 .

[24]  Viv Kendon,et al.  Quantum walks on general graphs , 2003, quant-ph/0306140.

[25]  J Eisert,et al.  Assessing non-Markovian quantum dynamics. , 2007, Physical review letters.

[26]  Aharonov,et al.  Quantum Walks , 2012, 1207.7283.

[27]  S. Luo,et al.  Quantifying non-Markovianity via correlations , 2012 .

[28]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[29]  Sabre Kais,et al.  Degree distribution in quantum walks on complex networks , 2013, 1305.6078.

[30]  R. Blatt,et al.  Realization of a quantum walk with one and two trapped ions. , 2009, Physical review letters.

[31]  Barry C Sanders,et al.  Experimental quantum-walk revival with a time-dependent coin. , 2015, Physical review letters.

[32]  Claudia Benedetti,et al.  Non-Markovian continuous-time quantum walks on lattices with dynamical noise , 2015, 1510.08652.

[33]  Mark Hillery,et al.  Quantum walks with random phase shifts , 2006, quant-ph/0607092.

[34]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[35]  Zhiyong Feng,et al.  Convergence of quantum random walks with decoherence , 2011, 1108.4482.

[36]  M. Paternostro,et al.  Geometrical characterization of non-Markovianity , 2013, 1302.6673.

[37]  G. Guo,et al.  Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems , 2011, 1109.2677.

[38]  Elsi-Mari Laine,et al.  Colloquium: Non-Markovian dynamics in open quantum systems , 2015, 1505.01385.

[39]  Roberto Morandotti,et al.  Realization of quantum walks with negligible decoherence in waveguide lattices. , 2007, Physical review letters.

[40]  Takuya Kitagawa,et al.  Topological phenomena in quantum walks: elementary introduction to the physics of topological phases , 2012, Quantum Information Processing.

[41]  Jyrki Piilo,et al.  Measure for the non-Markovianity of quantum processes , 2010, 1002.2583.

[42]  Volkher B. Scholz,et al.  Disordered Quantum Walks in one lattice dimension , 2011, 1101.2298.

[43]  Salvador Elías Venegas-Andraca,et al.  Quantum walks: a comprehensive review , 2012, Quantum Information Processing.

[44]  J. Ghosh Simulating Anderson localization via a quantum walk on a one-dimensional lattice of superconducting qubits , 2013, 1311.4284.

[45]  Y.-F. Huang,et al.  Locality and universality of quantum memory effects , 2014, Scientific Reports.

[46]  Vivien M. Kendon,et al.  Decoherence in quantum walks – a review , 2006, Mathematical Structures in Computer Science.

[47]  Zhi-Wen Mo,et al.  Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels , 2013 .

[48]  Andris Ambainis,et al.  Quantum walks driven by many coins , 2002, quant-ph/0210161.

[49]  A. Crespi,et al.  Anderson localization of entangled photons in an integrated quantum walk , 2013, Nature Photonics.

[50]  Mário Ziman,et al.  The Mathematical Language of Quantum Theory by Teiko Heinosaari , 2011 .

[51]  A Schreiber,et al.  Decoherence and disorder in quantum walks: from ballistic spread to localization. , 2011, Physical review letters.

[52]  Viv Kendon,et al.  Decoherence can be useful in quantum walks , 2002, quant-ph/0209005.

[53]  Filippo Caruso,et al.  Universally optimal noisy quantum walks on complex networks , 2013, 1312.1832.

[54]  Albert H. Werner,et al.  Asymptotic evolution of quantum walks with random coin , 2010, 1009.2019.

[55]  Vladimiro Sassone,et al.  Mathematical Structures in Computer Science vol. 14(3). Special issue on Concurrency and Coordination , 2004 .

[56]  I. Jex,et al.  Quantum walk with jumps , 2011, 1106.2036.

[57]  Dieter Meschede,et al.  Ideal Negative Measurements in Quantum Walks Disprove Theories Based on Classical Trajectories , 2014, 1404.3912.

[58]  Rong Zhang,et al.  Realization of Single-Qubit Positive-Operator-Valued Measurement via a One-Dimensional Photonic Quantum Walk. , 2015, Physical review letters.

[59]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[60]  A Aspuru-Guzik,et al.  Discrete single-photon quantum walks with tunable decoherence. , 2010, Physical review letters.

[61]  D. Chruściński,et al.  Degree of non-Markovianity of quantum evolution. , 2013, Physical review letters.

[62]  S. Maniscalco,et al.  Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective , 2014, Scientific Reports.

[63]  S. Olivares,et al.  Continuous-variable quantum key distribution in non-Markovian channels , 2010, 1011.0304.

[64]  W. Marsden I and J , 2012 .

[65]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[66]  F. Petruccione,et al.  Open Quantum Walks on Graphs , 2012, 1401.3305.

[67]  Frederick W. Strauch,et al.  Connecting the discrete- and continuous-time quantum walks , 2006 .

[68]  A Schreiber,et al.  Photons walking the line: a quantum walk with adjustable coin operations. , 2009, Physical review letters.

[69]  C. P. Sun,et al.  Quantum Fisher information flow and non-Markovian processes of open systems , 2009, 0912.0587.

[70]  Quantum walks on trees with disorder: Decay, diffusion, and localization , 2012, 1206.3178.