Complete Active Space multiconfiguration Dirac-Hartree-Fock calculations of hyperfine structure constants

The multiconfiguration Dirac-Hartree-Fock (MCDHF) model has been employed to calculate the expectation values for the hyperfine splittings of the 5d96s2 2D3/2 and 5d96s2 2D5/2 levels of atomic gold. One-, two-, and three-body electron correlation effects involving all 79 electrons have been included in a systematic manner. The approximation employed in this study is equivalent to a Complete Active Space (CAS) approach. Calculated electric field gradients, together with experimental values of the electric quadrupole hyperfine structure constants, allow us to extract a nuclear electric quadrupole moment Q(197Au)=521.5(5.0) mb.

[1]  Olsen,et al.  Large-scale multiconfiguration Hartree-Fock and configuration-interaction calculations of the transition probability and hyperfine structures in the sodium resonance transition. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[2]  P. Schwerdtfeger,et al.  The quadrupole moment of the 3/2+ nuclear ground state of 197Au from electric field gradient relativistic coupled cluster and density-functional theory of small molecules and the solid state. , 2005, The Journal of chemical physics.

[3]  P. Indelicato,et al.  Relativistic many-body and QED effects on the hyperfine structure of lithium-like ions , 2000 .

[4]  Peter Schwerdtfeger,et al.  Dependence of relativistic effects on electronic configuration in the neutral atoms of d‐ and f‐block elements , 2002, J. Comput. Chem..

[5]  N. Stone Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments , 2005 .

[6]  M. Kaupp,et al.  Scalar relativistic calculations of hyperfine coupling tensors using the Douglas-Kroll-Hess method with a finite-size nucleus model. , 2006, Physical chemistry chemical physics : PCCP.

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  H. Quiney,et al.  Nuclear electric quadrupole moment of gold. , 2007, The Journal of chemical physics.

[9]  Per Jönsson,et al.  Effects of electron correlation, relativity, and nuclear structure on hyperfine constants of Be{sup +} and F{sup 6+} , 1999 .

[10]  W. Johnson Atomic structure theory , 2007 .

[11]  Ingvar Lindgren,et al.  Atomic Many-Body Theory , 1982 .

[12]  W. J. Childs,et al.  Hyperfine Structure of the 9161-cm-1 2D52 State of Au197 and the Nuclear Electric-Quadrupole Moment , 1966 .

[13]  F. A. Parpia,et al.  GRASP: A general-purpose relativistic atomic structure program , 1989 .

[14]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[15]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. II , 2005 .

[16]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. III. , 2008, Chemical Society reviews.

[17]  E. Eliav,et al.  Nuclear quadrupole moment of 197Au from high-accuracy atomic calculations. , 2007, The Journal of chemical physics.

[18]  Walter Curtis Johnson,et al.  Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation , 2008 .

[19]  Indelicato Projection operators in multiconfiguration Dirac-Fock calculations: Application to the ground state of heliumlike ions. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[20]  E. Eliav,et al.  High-Accuracy Calculations for Heavy and Super-Heavy Elements , 1998 .

[21]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[22]  W. Itano Quadrupole moments and hyperfine constants of metastable states of Ca{sup +}, Sr{sup +}, Ba{sup +}, Yb{sup +}, Hg{sup +}, and Au , 2005, physics/0512250.

[23]  Per Jönsson,et al.  HFS92: A program for relativistic atomic hyperfine structure calculations , 1996 .

[24]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[25]  I. P. Grant,et al.  The grasp2K relativistic atomic structure package , 2007, Comput. Phys. Commun..

[26]  J. Desclaux A multiconfiguration relativistic DIRAC-FOCK program , 1984 .

[27]  P. Palade,et al.  Electronic properties of gold-aluminium intermetallic compounds , 2003 .

[28]  Pekka Pyykkö Theoretische Chemie des Golds , 2004 .

[29]  Jönsson,et al.  Large-scale multiconfiguration Dirac-Fock calculations of the hyperfine-structure constants of the 2s 2S1/2, 2p 2P1/2, and 2p 2P3/2 states of lithium. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[30]  I. Grant RELATIVISTIC CALCULATION OF ATOMIC PROPERTIES , 1994 .

[31]  P. Raghavan,et al.  Table of nuclear moments , 1989 .

[32]  Y. Ishikawa,et al.  Open-shell relativistic coupled-cluster method with Dirac-Fock-Breit wave functions: Energies of the gold atom and its cation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[33]  A. G. Blachman,et al.  Hyperfine Structure andgJValue of theD322and of theF924States ofAu197 , 1967 .

[34]  P. Schwerdtfeger,et al.  {sup 63}Cu and {sup 197}Au nuclear quadrupole moments from four-component relativistic density-functional calculations using correct long-range exchange , 2007 .

[35]  Walter R. Johnson,et al.  Atomic Structure Theory : Lectures on Atomic Physics , 2007 .

[36]  M. Kaupp,et al.  Scalar relativistic calculations of hyperfine coupling tensors using the Douglas-Kroll-Hess method with a finite-size nucleus model. , 2004, Physical chemistry chemical physics : PCCP.

[37]  G. Jiang,et al.  Multi-configuration Dirac–Fock calculations of the hyperfine structure constants A and B of neutral Cu, Ag and Au , 2007 .

[38]  R. Welsh,et al.  Muonic 197Au: A test of the weak-coupling model , 1974 .

[39]  L. Visscher,et al.  Nuclear quadrupole moments for Al-27 and Ga-69 derived from four-component molecular coupled cluster calculations , 2001 .

[40]  P. Jönsson,et al.  Large-scale MCHF calculations of hyperfine structures in nitrogen and oxygen , 1997 .

[41]  P. Pyykkö Year-2008 nuclear quadrupole moments , 2008 .

[42]  I. Grant Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (Springer Series on Atomic, Optical, and Plasma Physics) , 2010 .

[43]  P. Schwerdtfeger,et al.  Improved dipole moments by combining short-range gradient-corrected density-functional theory with long-range wave-function methods , 2007 .

[44]  P. Pyykkö,et al.  Comment on the magnetic dipole hyperfine interaction in the gold atom ground state , 2008 .