Sulfur nanocomposite as a positive electrode material for rechargeable potassium-sulfur batteries.

A pyrolyzed polyacrylonitrile/sulfur nanocomposite (SPAN) was used as a positive electrode material for a room temperature K-S battery operated in carbonate electrolyte. SPAN presented a high reversible capacity of 270 mA h g-1 (710 mA h gsulfur-1) and excellent rate performance, which demonstrate that it is a promising positive electrode material for K-ion and K-batteries.

[1]  Jun Liu,et al.  A Low Cost, High Energy Density, and Long Cycle Life Potassium–Sulfur Battery for Grid‐Scale Energy Storage , 2015, Advanced materials.

[2]  J. Tarascon,et al.  Preparation and Characterization of a Stable FeSO4F-Based Framework for Alkali Ion Insertion Electrodes , 2012 .

[3]  Andrew McDonagh,et al.  High‐Capacity Aqueous Potassium‐Ion Batteries for Large‐Scale Energy Storage , 2017, Advanced materials.

[4]  N. Sharma,et al.  An Initial Review of the Status of Electrode Materials for Potassium‐Ion Batteries , 2017 .

[5]  Wenhua Zuo,et al.  Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries , 2016 .

[6]  S. Passerini,et al.  Non-Aqueous K-Ion Battery Based on Layered K0.3MnO2 and Hard Carbon/Carbon Black , 2016 .

[7]  Lin Gu,et al.  Smaller sulfur molecules promise better lithium-sulfur batteries. , 2012, Journal of the American Chemical Society.

[8]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[9]  Jie Gao,et al.  Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies , 2011 .

[10]  D. Su,et al.  Hard–Soft Composite Carbon as a Long‐Cycling and High‐Rate Anode for Potassium‐Ion Batteries , 2017 .

[11]  Keith Share,et al.  Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes. , 2016, ACS nano.

[12]  Yan Yao,et al.  Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries , 2016 .

[13]  Xiulei Ji,et al.  Potassium Secondary Batteries. , 2017, ACS applied materials & interfaces.

[14]  Joseph Paul Baboo,et al.  Amorphous iron phosphate: potential host for various charge carrier ions , 2014 .

[15]  A. Manthiram,et al.  Low-Cost High-Energy Potassium Cathode. , 2017, Journal of the American Chemical Society.

[16]  P. Hagenmuller,et al.  Les bronzes de cobalt KxCoO2 (x < 1). L'oxyde KCoO2 , 1975 .

[17]  K. Kubota,et al.  KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. , 2017, Chemical communications.

[18]  Pu Chen,et al.  Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode , 2013 .

[19]  Jingying Xie,et al.  Lithium storage in conductive sulfur-containing polymers , 2004 .

[20]  M. Buchmeiser,et al.  Structure-Related Electrochemistry of Sulfur-Poly(acrylonitrile) Composite Cathode Materials for Rechargeable Lithium Batteries , 2011 .

[21]  Di Bao,et al.  A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[22]  G. Ceder,et al.  Investigation of Potassium Storage in Layered P3‐Type K0.5MnO2 Cathode , 2017, Advanced materials.

[23]  Naixin Xu,et al.  A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries , 2002 .

[24]  Kai Zhang,et al.  Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries. , 2014, Inorganic chemistry.

[25]  Kingo Itaya,et al.  Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes , 1982 .

[26]  G. Ceder,et al.  K‐Ion Batteries Based on a P2‐Type K0.6CoO2 Cathode , 2017 .

[27]  Clement Bommier,et al.  Hard Carbon Microspheres: Potassium‐Ion Anode Versus Sodium‐Ion Anode , 2016 .

[28]  Y. Li,et al.  Stable-cycle and high-capacity conductive sulfur-containing cathode materials for rechargeable lithium batteries , 2005 .

[29]  Byung Gon Kim,et al.  One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature. , 2013, Nano letters.

[30]  S. H. Abdi,et al.  Structural and EPR studies of Lithium inserted layered Potassium tetra titanate K2Ti4O9 as material for K ions battery , 2015, Journal of Materials Science: Materials in Electronics.

[31]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[32]  Jin Han,et al.  Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. , 2016, Chemical communications.

[33]  A. Eftekhari Potassium secondary cell based on Prussian blue cathode , 2004 .

[34]  Jin Han,et al.  Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries. , 2016, Chemical communications.

[35]  Kenville E. Hendrickson,et al.  Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites. , 2015, Journal of the American Chemical Society.

[36]  K. Kubota,et al.  P2- and P3-KxCoO2 as an electrochemical potassium intercalation host. , 2017, Chemical communications.

[37]  Kai Zhang,et al.  Recent Advances and Prospects of Cathode Materials for Sodium‐Ion Batteries , 2015, Advanced materials.

[38]  Roy G. Gordon,et al.  Alkaline quinone flow battery , 2015, Science.