Radiative transitions in quaternary In0.52Ga0.18Al0.30As layers grown by molecular beam epitaxy

The structural and optical properties of molecular beam epitaxy‐grown In0.52Ga0.18Al0.30As layers (E300 Kg≂1.18 eV), suitable for waveguide applications, have been studied by means of high‐resolution x‐ray diffraction, absorption, photoluminescence, photoreflectance, and high‐excitation intensity photoluminescence spectroscopy. The combination of these techniques allowed us to study the free‐exciton states, the impurity related transitions, and the formation of a dense electron‐hole plasma.

[1]  H. Wei,et al.  Electron effective mass and band‐gap dependence on alloy composition of AlyGaxIn1−y−xAs, lattice matched to InP , 1992 .

[2]  J. P. Praseuth,et al.  Molecular Beam Epitaxy Grown Al ( Ga ) InAs : Schottky Contacts and Deep Levels , 1991 .

[3]  D. Trommer,et al.  Critical issues in the MBE growth of Ga0.47In0.53As for waveguide/PIN/JFET integration , 1991 .

[4]  Hartmut Haug,et al.  Simplified calculations of the optical spectra of two- and three-dimensional laser-excited semiconductors , 1989 .

[5]  H. Morkoç,et al.  Quasi‐donor‐acceptor pair photoluminescence emission in GaxIn1−xAs/InP , 1989 .

[6]  J. Gerard,et al.  Growth and characterization of AlGaInAs lattice matched to InP grown by molecular‐beam epitaxy , 1988 .

[7]  G. Guillot,et al.  Photoluminescence studies of Mg and Hg implanted Ga0.47In0.53As , 1987 .

[8]  S. Hiyamizu,et al.  Conduction Band Edge Discontinuity of In0.52Ga0.48As/In0.52(Ga1-xAlx)0.48As(0≦x≦1) Heterostructures , 1986 .

[9]  S. Hiyamizu,et al.  MBE Growth of InGaAlAs Lattice-Matched to InP by Pulsed Molecular Beam Method , 1986 .

[10]  R. Stall,et al.  Effect of oxygen on In0.53Ga0.47As films grown by molecular beam epitaxy , 1985 .

[11]  K. Ploog,et al.  Free and bound excitons and the effect of alloy disorder in MBE grown AlxGa1-xAs , 1985 .

[12]  T. Bridges,et al.  Luminescence in ion‐implanted In0.53Ga0.47As , 1985 .

[13]  H. Queisser,et al.  Alloy broadening in photoluminescence spectra ofAlxGa1−xAs , 1984 .

[14]  J. Shah,et al.  Luminescence in high purity In0.53Ga0.47As , 1984 .

[15]  Aron Pinczuk,et al.  Compositional dependence of band‐gap energy and conduction‐band effective mass of In1−x−yGaxAlyAs lattice matched to InP , 1982 .

[16]  R. Kalia,et al.  Universal behavior of exchange-correlation energy in electron-hole liquid , 1982 .

[17]  Yu-Ssu Chen,et al.  Near‐band gap absorption and photoluminescence of In0.53Ga0.47As semiconductor alloy , 1981 .

[18]  W. Bonner,et al.  Molecular beam epitaxial growth of uniform In0.53Ga0.47As on InP with a coaxial In‐Ga oven , 1981 .

[19]  H. Ohno,et al.  Double heterostructure Ga0.47In0.53As MESFETs by MBE , 1980, IEEE Electron Device Letters.

[20]  R. Bindemann,et al.  On the Spectral Intensity Distribution of Donor–Acceptor Pair Recombination in GaP , 1974 .

[21]  J. Primot,et al.  Investigation of crystalline and optical properties of Al0.48In0.52As grown by molecular-beam expitaxy , 1987 .

[22]  P. Landsberg,et al.  Lifetime broadening of a parabolic band edge of a pure semiconductor at various temperatures , 1985 .

[23]  S. Aksela,et al.  Semiempirical Solid State Shifts in the Auger-and Photoelectron Energies , 1982 .