Paper-based potentiometric ion sensing.

This paper describes the design and fabrication of ion-sensing electrochemical paper-based analytical devices (EPADs) in which a miniaturized paper reference electrode is integrated with a small ion-selective paper electrode (ISPE) for potentiometric measurements. Ion-sensing EPADs use printed wax barriers to define electrochemical sample and reference zones. Single-layer EPADs for sensing of chloride ions include wax-defined sample and reference zones that each incorporate a Ag/AgCl electrode. In EPADs developed for other electrolytes (potassium, sodium, and calcium ions), a PVC-based ion-selective membrane is added to separate the sample zone from a paper indicator electrode. After the addition of a small volume (less than 10 μL) of sample and reference solutions to different zones, ion-sensing EPADs exhibit a linear response, over 3 orders of magnitude, in ranges of electrolyte concentrations that are relevant to a variety of applications, with a slope close to the theoretical value (59.2/z mV). Ion-selective EPADs provide a portable, inexpensive, and disposable way of measuring concentrations of electrolyte ions in aqueous solutions.

[1]  Samantha T. Mensah,et al.  Nanomolar detection limits of Cd²⁺, Ag⁺, and K⁺ using paper-strip ion-selective electrodes. , 2014, Analytical chemistry.

[2]  Richard M Crooks,et al.  Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching. , 2014, Analytical chemistry.

[3]  Grzegorz Lisak,et al.  Potentiometric sensing utilizing paper-based microfluidic sampling. , 2014, The Analyst.

[4]  F. Rius,et al.  A paper-based potentiometric cell for decentralized monitoring of Li levels in whole blood. , 2014, Lab on a chip.

[5]  Claudio Parolo,et al.  Paper-based electroanalytical devices with an integrated, stable reference electrode. , 2013, Lab on a chip.

[6]  P. Bühlmann,et al.  Reference electrodes with salt bridges contained in nanoporous glass: an underappreciated source of error. , 2013, Analytical chemistry.

[7]  George M. Whitesides,et al.  Paper-based electroanalytical devices for accessible diagnostic testing , 2013 .

[8]  W. E. Morf The Principles of Ion-Selective Electrodes and of Membrane Transport , 2012 .

[9]  Yi Lu,et al.  Aptamer-based origami paper analytical device for electrochemical detection of adenosine. , 2012, Angewandte Chemie.

[10]  F. Rius,et al.  Paper-based ion-selective potentiometric sensors. , 2012, Analytical chemistry.

[11]  Jinghua Yu,et al.  Electrochemical immunoassay on a 3D microfluidic paper-based device. , 2012, Chemical Communications.

[12]  Philippe Bühlmann,et al.  Ion‐Selective Electrodes With Ionophore‐Doped Sensing Membranes , 2012 .

[13]  D. Cliffel,et al.  Electrochemical sensors and biosensors. , 2012, Analytical chemistry.

[14]  E. Pretsch,et al.  Advances in Potentiometry , 2012 .

[15]  George M Whitesides,et al.  Integration of paper-based microfluidic devices with commercial electrochemical readers. , 2010, Lab on a chip.

[16]  George M Whitesides,et al.  Electrochemical sensing in paper-based microfluidic devices. , 2010, Lab on a chip.

[17]  W. Dungchai,et al.  Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. , 2010, Analytical chemistry.

[18]  A. Gobbi,et al.  Electrochemical detection in a paper-based separation device. , 2010, Analytical chemistry.

[19]  Orawon Chailapakul,et al.  Electrochemical detection for paper-based microfluidics. , 2009, Analytical chemistry.

[20]  A. Ivaska,et al.  Potentiometric ion sensors. , 2008, Chemical reviews.

[21]  G. Whitesides,et al.  Patterned paper as a platform for inexpensive, low-volume, portable bioassays. , 2007, Angewandte Chemie.

[22]  Joseph Wang,et al.  Portable electrochemical systems , 2002 .

[23]  Pretsch,et al.  Cationic or anionic sites? Selectivity optimization of ion-selective electrodes based on charged ionophores , 2000, Analytical chemistry.

[24]  D. Stanley Tietz Textbook of Clinical Chemistry , 1999 .

[25]  P. Bühlmann,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. , 1998, Chemical reviews.

[26]  I. Lauks MICROFABRICATED BIOSENSORS AND MICROANALYTICAL SYSTEMS FOR BLOOD ANALYSIS , 1998 .

[27]  A. Mroz Disposable reference electrode , 1998 .

[28]  Ernö Pretsch,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. , 1997, Chemical reviews.

[29]  K. Cammann,et al.  Disposable ion-selective electrodes , 1995 .

[30]  Meinhard Knoll,et al.  Potentiometric test strip , 1995 .

[31]  K. Cammann,et al.  Potentiometric biosensor in double matrix membrane technology , 1995 .

[32]  C. Burtis Tietz textbook of Clinical Chemistry , 1994 .

[33]  A. Lewenstam,et al.  Application of ion-selective electrodes in clinical analysis , 1991 .

[34]  B Walter,et al.  Solid-phase reagent strips for detection of therapeutic drugs in serum by substrate-labeled fluorescent immunoassay. , 1983, Analytical chemistry.

[35]  Bernard E. Statland,et al.  Clinical Decision Levels for Lab Tests , 1983 .

[36]  P. C. Meier Two-parameter debye-hückel approximation for the evaluation of mean activity coefficients of 109 electrolytes , 1982 .

[37]  Allen J. Bard,et al.  Electroanalytical Chemistry: A Series of Advances , 1974 .

[38]  F. J. Holler,et al.  Principles of Instrumental Analysis , 1973 .