Tight coupling of the t-SNARE and calcium channel microdomains in adrenomedullary slices and not in cultured chromaffin cells.

[1]  J. Renart,et al.  Dynamic association of the Ca2+ channel α1A subunit and SNAP‐25 in round or neurite‐emitting chromaffin cells , 2005, The European journal of neuroscience.

[2]  V. Ceña,et al.  Adrenal medulla calcium channel population is not conserved in bovine chromaffin cells in culture , 2004, Neuroscience.

[3]  W. Almers,et al.  Tracking SNARE Complex Formation in Live Endocrine Cells , 2004, Science.

[4]  A. Villarroel,et al.  New Roles of Myosin II during Vesicle Transport and Fusion in Chromaffin Cells* , 2004, Journal of Biological Chemistry.

[5]  K. Kumakura,et al.  Site of Docking and Fusion of Insulin Secretory Granules in Live MIN6 β Cells Analyzed by TAT-conjugated Anti-syntaxin 1 Antibody and Total Internal Reflection Fluorescence Microscopy* , 2004, Journal of Biological Chemistry.

[6]  Colin Rickman,et al.  High Affinity Interaction of Syntaxin and SNAP-25 on the Plasma Membrane Is Abolished by Botulinum Toxin E* , 2004, Journal of Biological Chemistry.

[7]  W. Stühmer,et al.  Calcium regulates exocytosis at the level of single vesicles , 2003, Nature Neuroscience.

[8]  B. Davletov,et al.  Mechanism of Calcium-independent Synaptotagmin Binding to Target SNAREs* , 2003, The Journal of Biological Chemistry.

[9]  E. Neher,et al.  Emerging Roles of Presynaptic Proteins in Ca++-Triggered Exocytosis , 2002, Science.

[10]  K. Kumakura,et al.  Exocytosis: The Chromaffin Cell As a Model System , 2002, Annals of the New York Academy of Sciences.

[11]  C. Matute,et al.  Differential Expression of Calcium Channel Subtypes in the Bovine Adrenal Medulla , 2001, Neuroendocrinology.

[12]  A. Gil,et al.  Co-localization of vesicles and P/Q Ca2+-channels explains the preferential distribution of exocytotic active zones in neurites emitted by bovine chromaffin cells. , 2001, European journal of cell biology.

[13]  D. Bruns,et al.  SNAREs are concentrated in cholesterol‐dependent clusters that define docking and fusion sites for exocytosis , 2001, The EMBO journal.

[14]  W. Stühmer,et al.  Interaction of Secretory Organelles with the Membrane , 2000, The Journal of Membrane Biology.

[15]  E. Neher,et al.  R-Type Ca2+ Channels Are Coupled to the Rapid Component of Secretion in Mouse Adrenal Slice Chromaffin Cells , 2000, The Journal of Neuroscience.

[16]  D. Zenisek,et al.  Transport, capture and exocytosis of single synaptic vesicles at active zones , 2000, Nature.

[17]  W. Catterall Interactions of Presynaptic Ca2+ Channels and Snare Proteins in Neurotransmitter Release , 1999, Annals of the New York Academy of Sciences.

[18]  A. Gil,et al.  Dual effects of botulinum neurotoxin A on the secretory stages of chromaffin cells , 1998, The European journal of neuroscience.

[19]  A. Gil,et al.  Preferential localization of exocytotic active zones in the terminals of neurite-emitting chromaffin cells. , 1998, European journal of cell biology.

[20]  David Ress,et al.  Dissection of active zones at the neuromuscular junction by EM tomography , 1998, Journal of Physiology-Paris.

[21]  E. Neher,et al.  Rapid Exocytosis in Single Chromaffin Cells Recorded from Mouse Adrenal Slices , 1997, The Journal of Neuroscience.

[22]  E. Neher,et al.  Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. , 1997, Biophysical journal.

[23]  R. Wightman,et al.  Colocalization of calcium entry and exocytotic release sites in adrenal chromaffin cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[24]  E Neher,et al.  Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Manuela G. López,et al.  Q‐ and L‐type Ca2+ channels dominate the control of secretion in bovine chromaffin cells , 1994, FEBS letters.

[26]  J. Hell,et al.  Biochemical properties and subcellular distribution of an N-type calcium hannel α1 subunit , 1992, Neuron.

[27]  Robert H. Chow,et al.  Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells , 1992, Nature.

[28]  P. Ellinor,et al.  Molecular cloning of multiple subtypes of a novel rat brain isoform of the α 1 subunit of the voltage-dependent calcium channel , 1991, Neuron.

[29]  T. Snutch,et al.  Primary structure of a calcium channel that is highly expressed in the rat cerebellum. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[30]  W. Schmidt,et al.  Exocytotic exposure and retrieval of membrane antigens of chromaffin granules: quantitative evaluation of immunofluorescence on the surface of chromaffin cells , 1984, The Journal of cell biology.

[31]  A. Garcı́a,et al.  Effects of collagenase on the release of [3H]‐noradrenaline from bovine cultured adrenal chromaffin cells , 1984, British journal of pharmacology.

[32]  K. Burridge,et al.  Visualization of the exocytosis/endocytosis secretory cycle in cultured adrenal chromaffin cells , 1983, The Journal of cell biology.

[33]  T. Reese,et al.  Structural changes after transmitter release at the frog neuromuscular junction , 1981, The Journal of cell biology.

[34]  E. Lazarides,et al.  Actin, alpha-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells , 1976, The Journal of cell biology.