D-Glucuronic Acid Coated Gd(IO3)3·2H2O Nanomaterial as a Potential T1 MRI-CT Dual Contrast Agent

To date, only a few nanosystems have been investigated as T1 MRI-CT dual contrast agents. The T1 MRI-CT dual functionality of a material depends on its longitudinal water-proton relaxivity (r1) and X-ray absorption strength. We explored Gd(IO3)3·2H2O nanomaterial because Gd is the most powerful element for T1 MRI contrast agents, and both Gd and I absorb X-ray radiation; Gd absorbs X-ray radiation ca. 2.5 times more strongly than I. D-Glucuronic acid coated Gd(IO3)3·2H2O nanomaterial showed a very large r1 of 52.3 s–1 mM–1 (r2/r1 = 1.21), which could be ascribed to hydrated water molecules in the lattice. Its X-ray absorption intensity was also stronger than those of commercial molecular iodine CT contrast agents. This result clearly suggests that D-glucuronic acid coated Gd(IO3)3·2H2O nanomaterial is a potential T1 MRI-CT dual contrast agent.

[1]  P. Eu,et al.  Development and use of iron oxide nanoparticles ( Part 1 ) : Synthesis of iron oxide nanoparticles for MRI , 2010 .

[2]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[3]  Michael A McDonald,et al.  Small Particulate Gadolinium Oxide and Gadolinium Oxide Albumin Microspheres as Multimodal Contrast and Therapeutic Agents , 2003, Investigative radiology.

[4]  S. Abrahams,et al.  Paramagnetic Gd(IO3)3. Crystal structure of the transition metal iodates. IV , 1977 .

[5]  S. Ludtke,et al.  Superparamagnetic gadonanotubes are high-performance MRI contrast agents. , 2005, Chemical communications.

[6]  H. Thomsen Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide , 2006, European Radiology.

[7]  G. J. McCarthy,et al.  JCPDS-International Centre for Diffraction Data , 1981 .

[8]  Kuo-Wei Hu,et al.  Fabrication of Gd2O(CO3)2·H2O/silica/gold hybrid particles as a bifunctional agent for MR imaging and photothermal destruction of cancer cells , 2009 .

[9]  Z. Assefa,et al.  Syntheses, structures, and vibrational spectroscopy of the two-dimensional iodates Ln(IO3)3 and Ln(IO3)3(H2O) (LnYb, Lu) , 2006 .

[10]  K. Bae,et al.  Gadolinium as a CT contrast agent: assessment in a porcine model. , 1999, Radiology.

[11]  A. Hector,et al.  Hydrothermal Synthesis of Rare Earth Iodates from the Corresponding Periodates: Structures of Sc(IO3)3, Y(IO3)3 · 2 H2O, La(IO3)3 · 1/2 H2O and Lu(IO3)3 · 2 H2O , 2002 .

[12]  Yongmin Chang,et al.  Paramagnetic nanoparticle T1 and T2 MRI contrast agents. , 2012, Physical chemistry chemical physics : PCCP.

[13]  A. Tanimoto,et al.  Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. , 2006, Journal of the American Chemical Society.

[14]  P. Couvreur,et al.  Nanoparticles in cancer therapy and diagnosis. , 2002, Advanced drug delivery reviews.

[15]  G. Choppin,et al.  Hydration thermodynamics of the lanthanide ions , 1969 .

[16]  Weili Lin,et al.  Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. , 2006, Journal of the American Chemical Society.

[17]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[18]  Francis Vocanson,et al.  Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. , 2008, Journal of the American Chemical Society.

[19]  A. D. Quinn,et al.  Gd‐DTPA: An Alternative Contrast Medium for CT , 1994, Journal of computer assisted tomography.

[20]  Yongmin Chang,et al.  Water-soluble MnO nanocolloid for a molecular T1 MR imaging: a facile one-pot synthesis, in vivo T1 MR images, and account for relaxivities. , 2010, ACS applied materials & interfaces.

[21]  K. Nassau,et al.  Transition metal iodates. VII. Crystallographic and nonlinear optic survey of the 4f-iodates , 1976 .

[22]  Yongmin Chang,et al.  Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. , 2009, ACS nano.

[23]  McQuillan,et al.  An in Situ Infrared Spectroscopic Investigation of Lysine Peptide and Polylysine Adsorption to TiO(2) from Aqueous Solutions. , 1999, Journal of colloid and interface science.

[24]  P. Jacobs,et al.  Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. , 1995, Magnetic resonance imaging.

[25]  Yongmin Chang,et al.  A facile synthesis, in vitro and in vivo MR studies of d-glucuronic acid-coated ultrasmall Ln₂O₃ (Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent. , 2011, ACS applied materials & interfaces.

[26]  Yongmin Chang,et al.  Water‐Soluble Ultra‐Small Manganese Oxide Surface Doped Gadolinium Oxide (Gd2O3@MnO) Nanoparticles for MRI Contrast Agent , 2010 .

[27]  D. Bahnemann,et al.  ATR-FTIR measurements and quantum chemical calculations concerning the adsorption and photoreaction of oxalic acid on TiO2. , 2006, Physical chemistry chemical physics : PCCP.

[28]  Robert N. Muller,et al.  Theory of proton relaxation induced by superparamagnetic particles , 1999 .

[29]  Olivier Tillement,et al.  Hybrid gadolinium oxide nanoparticles combining imaging and therapy , 2009 .

[30]  R. Prosser,et al.  Water-Soluble GdF3 and GdF3/LaF3 NanoparticlesPhysical Characterization and NMR Relaxation Properties , 2006 .

[31]  Yongmin Chang,et al.  Water‐Soluble Ultra Small Paramagnetic or Superparamagnetic Metal Oxide Nanoparticles for Molecular MR Imaging , 2009 .

[32]  D. Lee,et al.  Multimodal Molecular Imaging In Vivo , 2010 .

[33]  Sa Huang,et al.  Facile and large-scale synthesis of Gd(OH)3 nanorods for MR imaging with low toxicity , 2012 .

[34]  W. Tremel,et al.  Highly soluble multifunctional MnO nanoparticles for simultaneous optical and MRI imaging and cancer treatment using photodynamic therapy , 2010 .

[35]  J. Peterson,et al.  Contrast-enhanced CT of the liver and spleen: comparison of ionic and nonionic contrast agents. , 1989, AJR. American journal of roentgenology.

[36]  Tae Sup Lee,et al.  Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents , 2011, Nanotechnology.

[37]  Thierry Epicier,et al.  Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. , 2011, ACS nano.

[38]  F. H. Firsching,et al.  The solubilities of rare earth iodates , 1966 .

[39]  Yongmin Chang,et al.  Blood‐Pool and Targeting MRI Contrast Agents: From Gd‐Chelates to Gd‐Nanoparticles , 2012 .

[40]  A. D. Watson,et al.  Metal-Based X-ray Contrast Media. , 1999, Chemical reviews.

[41]  K. Uvdal,et al.  Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. , 2005, Journal of colloid and interface science.

[42]  Wenbin Lin,et al.  Nanoscale Metal–Organic Frameworks: Magnetic Resonance Imaging Contrast Agents and Beyond , 2010 .

[43]  H. Ishijima,et al.  Gd-DTPA: a possible alternative contrast agent for use in CT during intraarterial administration. , 1999, Journal of computer assisted tomography.

[44]  H. Miyamoto,et al.  Solubilities and free energies of transfer for lanthanoid iodates in dimethyl sulfoxide−water mixtures , 1986 .

[45]  A. Hector,et al.  Hydrothermal Synthesis of Rare Earth Iodates from the Corresponding Periodates: II1). Synthesis and Structures of Ln(IO3)3 (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er) and Ln(IO3)3 · 2H2O (Ln = Eu, Gd, Dy, Er, Tm, Yb) , 2004 .

[46]  K. Watkin,et al.  Multi-modal contrast agents: a first step. , 2002, Academic radiology.

[47]  J F Hainfeld,et al.  Gold nanoparticles: a new X-ray contrast agent. , 2006, The British journal of radiology.

[48]  J. Bloem,et al.  Gd-DTPA as a contrast agent in CT. , 1989, Radiology.

[49]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.