A cross-benchmark comparison of 87 learning to rank methods

Learning to rank is an increasingly important scientific field that comprises the use of machine learning for the ranking task. New learning to rank methods are generally evaluated on benchmark test collections. However, comparison of learning to rank methods based on evaluation results is hindered by the absence of a standard set of evaluation benchmark collections. In this paper we propose a way to compare learning to rank methods based on a sparse set of evaluation results on a set of benchmark datasets. Our comparison methodology consists of two components: (1) Normalized Winning Number, which gives insight in the ranking accuracy of the learning to rank method, and (2) Ideal Winning Number, which gives insight in the degree of certainty concerning its ranking accuracy. Evaluation results of 87 learning to rank methods on 20 well-known benchmark datasets are collected through a structured literature search. ListNet, SmoothRank, FenchelRank, FSMRank, LRUF and LARF are Pareto optimal learning to rank methods in the Normalized Winning Number and Ideal Winning Number dimensions, listed in increasing order of Normalized Winning Number and decreasing order of Ideal Winning Number.

[1]  Sean M. McNee,et al.  Being accurate is not enough: how accuracy metrics have hurt recommender systems , 2006, CHI Extended Abstracts.

[2]  Brendan J. Frey,et al.  Structured ranking learning using cumulative distribution networks , 2008, NIPS.

[3]  Hongfei Lin,et al.  Learning to rank with groups , 2010, CIKM.

[4]  Tao Qin,et al.  Selecting optimal training data for learning to rank , 2011, Inf. Process. Manag..

[5]  Dong Wang,et al.  A general magnitude-preserving boosting algorithm for search ranking , 2009, CIKM.

[6]  Jussara M. Almeida,et al.  Is Learning to Rank Worth it? A Statistical Analysis of Learning to Rank Methods , 2013, SBBD.

[7]  Cynthia Rudin,et al.  The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List , 2009, J. Mach. Learn. Res..

[8]  Pradeep Ravikumar,et al.  On NDCG Consistency of Listwise Ranking Methods , 2011, AISTATS.

[9]  Carlos Renjifo,et al.  The discounted cumulative margin penalty: Rank-learning with a list-wise loss and pair-wise margins , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[10]  Thorsten Joachims,et al.  Fast Active Exploration for Link-Based Preference Learning Using Gaussian Processes , 2010, ECML/PKDD.

[11]  Thorsten Joachims,et al.  Learning structural SVMs with latent variables , 2009, ICML '09.

[12]  Hsin-Hsi Chen,et al.  Automatic construction of an evaluation dataset from wisdom of the crowds for information retrieval applications , 2012, 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[13]  Vali Derhami,et al.  Applying reinforcement learning for web pages ranking algorithms , 2013, Appl. Soft Comput..

[14]  Kenneth Wai-Ting Leung,et al.  SFP-Rank: significant frequent pattern analysis for effective ranking , 2014, Knowledge and Information Systems.

[15]  Wei Li,et al.  A stochastic learning-to-rank algorithm and its application to contextual advertising , 2011, WWW.

[16]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[17]  Patrick Gallinari,et al.  Learning Scoring Functions with Order-Preserving Losses and Standardized Supervision , 2011, ICML.

[18]  Oluwasanmi Koyejo,et al.  Learning to Rank With Bregman Divergences and Monotone Retargeting , 2012, UAI.

[19]  Christopher J. C. Burges,et al.  From RankNet to LambdaRank to LambdaMART: An Overview , 2010 .

[20]  Tao Qin,et al.  Feature selection for ranking , 2007, SIGIR.

[21]  Jin Yu,et al.  Exponential Family Graph Matching and Ranking , 2009, NIPS.

[22]  Qinghua Zheng,et al.  Preference Learning to Rank with Sparse Bayesian , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[23]  Haixun Wang,et al.  Learning to rank with a novel kernel perceptron method , 2009, CIKM.

[24]  Tao Qin,et al.  Global Ranking Using Continuous Conditional Random Fields , 2008, NIPS.

[25]  Xian-Sheng Hua,et al.  Ranking Model Adaptation for Domain-Specific Search , 2009, IEEE Transactions on Knowledge and Data Engineering.

[26]  Maksims Volkovs,et al.  BoltzRank: learning to maximize expected ranking gain , 2009, ICML '09.

[27]  Tie-Yan Liu,et al.  Learning to rank: from pairwise approach to listwise approach , 2007, ICML '07.

[28]  Hongfei Lin,et al.  A Boosting Approach for Learning to Rank Using SVD with Partially Labeled Data , 2009, AIRS.

[29]  Kristian Kersting,et al.  Learning Preferences with Hidden Common Cause Relations , 2009, ECML/PKDD.

[30]  Tie-Yan Liu,et al.  Directly optimizing evaluation measures in learning to rank , 2008, SIGIR.

[31]  Hongyuan Zha,et al.  Smoothing DCG for learning to rank: a novel approach using smoothed hinge functions , 2009, CIKM.

[32]  Lars Schmidt-Thieme,et al.  Swarming to rank for information retrieval , 2009, GECCO.

[33]  W. Bruce Croft,et al.  Linear feature-based models for information retrieval , 2007, Information Retrieval.

[34]  Hongfei Lin,et al.  Learning to rank using query-level regression , 2011, SIGIR.

[35]  Jaime G. Carbonell,et al.  Fast learning of document ranking functions with the committee perceptron , 2008, WSDM '08.

[36]  Gregory N. Hullender,et al.  Learning to rank using gradient descent , 2005, ICML.

[37]  Tao Qin,et al.  Ranking with multiple hyperplanes , 2007, SIGIR.

[38]  Filip Radlinski,et al.  A support vector method for optimizing average precision , 2007, SIGIR.

[39]  Weijian Ni,et al.  A Query Dependent Approach to Learning to Rank for Information Retrieval , 2008, 2008 The Ninth International Conference on Web-Age Information Management.

[40]  Danushka Bollegala,et al.  Learning non-linear ranking functions for web search using probabilistic model building GP , 2013, 2013 IEEE Congress on Evolutionary Computation.

[41]  Kevin Duh,et al.  Distributed Learning-to-Rank on Streaming Data using Alternating Direction Method of Multipliers , 2011 .

[42]  Hang Li,et al.  AdaRank: a boosting algorithm for information retrieval , 2007, SIGIR.

[43]  Dmitry Yurievich Pavlov,et al.  BagBoo: a scalable hybrid bagging-the-boosting model , 2010, CIKM '10.

[44]  John Guiver,et al.  Learning to rank with SoftRank and Gaussian processes , 2008, SIGIR '08.

[45]  Tao Qin,et al.  LETOR: Benchmark Dataset for Research on Learning to Rank for Information Retrieval , 2007 .

[46]  Kevin Duh,et al.  Learning to rank with partially-labeled data , 2008, SIGIR '08.

[47]  Yi Chang,et al.  Yahoo! Learning to Rank Challenge Overview , 2010, Yahoo! Learning to Rank Challenge.

[48]  Min Xiao,et al.  Learning to Rank Documents Using Similarity Information between Objects , 2011, ICONIP.

[49]  Nima Asadi,et al.  Multi-Stage Search Architectures for Streaming Documents , 2013 .

[50]  Mingrui Wu,et al.  Gradient descent optimization of smoothed information retrieval metrics , 2010, Information Retrieval.

[51]  Jinesh Machchhar,et al.  Conditional Models for Non-smooth Ranking Loss Functions , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[52]  Danushka Bollegala,et al.  RankDE: learning a ranking function for information retrieval using differential evolution , 2011, GECCO '11.

[53]  Jaime G. Carbonell,et al.  Suppressing outliers in pairwise preference ranking , 2008, CIKM '08.

[54]  Maksims Volkovs,et al.  A flexible generative model for preference aggregation , 2012, WWW.

[55]  Arijit De,et al.  A Fuzzy Ordered Weighted Average (OWA) Approach to Result Merging for Metasearch Using the Analytical Network Process , 2011, 2011 Second International Conference on Emerging Applications of Information Technology.

[56]  Yong Tang,et al.  FSMRank: Feature Selection Algorithm for Learning to Rank , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[57]  Stephen E. Robertson,et al.  Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval , 1994, SIGIR '94.

[58]  Kilian Q. Weinberger,et al.  The Greedy Miser: Learning under Test-time Budgets , 2012, ICML.

[59]  Abdur Chowdhury,et al.  A picture of search , 2006, InfoScale '06.

[60]  Tao Qin,et al.  Robust sparse rank learning for non-smooth ranking measures , 2009, SIGIR.

[61]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[62]  Wagner Meira,et al.  Learning to rank at query-time using association rules , 2008, SIGIR '08.

[63]  Hongfei Lin,et al.  Learning to rank with cross entropy , 2011, CIKM '11.

[64]  Xueqi Cheng,et al.  Top-k learning to rank: labeling, ranking and evaluation , 2012, SIGIR '12.

[65]  Wagner Meira,et al.  Learning to Rank using Query-Level Rules , 2010, J. Inf. Data Manag..

[66]  Yong Tang,et al.  Efficient gradient descent algorithm for sparse models with application in learning-to-rank , 2013, Knowl. Based Syst..

[67]  Yong Tang,et al.  Learning to rank with document ranks and scores , 2011, Knowl. Based Syst..

[68]  Leonardo Rigutini SortNet: Learning To Rank By a Neural-Based Sorting Algorithm , 2008 .

[69]  Jiming Liu,et al.  Learning to rank using evolutionary computation: immune programming or genetic programming? , 2009, CIKM.

[70]  Zheng Chen,et al.  Knowledge transfer for cross domain learning to rank , 2010, Information Retrieval.

[71]  Yang Wang,et al.  Supervised rank aggregation based on query similarity for document retrieval , 2013, Soft Comput..

[72]  Kevin Duh,et al.  Semi-supervised ranking for document retrieval , 2011, Comput. Speech Lang..

[73]  LiuNing,et al.  Efficient gradient descent algorithm for sparse models with application in learning-to-rank , 2013 .

[74]  Kilian Q. Weinberger,et al.  Classifier Cascade for Minimizing Feature Evaluation Cost , 2012, AISTATS.

[75]  Balázs Kégl,et al.  Fast classification using sparse decision DAGs , 2012, ICML.

[76]  Michelangelo Diligenti,et al.  Learning to Rank Using Markov Random Fields , 2011, 2011 10th International Conference on Machine Learning and Applications and Workshops.

[77]  Brendan J. Frey,et al.  Probabilistic n-Choose-k Models for Classification and Ranking , 2012, NIPS.

[78]  Jen-Yuan Yeh,et al.  Learning to rank for information retrieval using layered multi-population genetic programming , 2012, 2012 IEEE International Conference on Computational Intelligence and Cybernetics (CyberneticsCom).

[79]  Patrick Gallinari,et al.  Ranking with ordered weighted pairwise classification , 2009, ICML '09.

[80]  Wei Fan,et al.  Heterogeneous cross domain ranking in latent space , 2009, CIKM.

[81]  Tao Qin,et al.  FRank: a ranking method with fidelity loss , 2007, SIGIR.

[82]  Hsin-Hsi Chen,et al.  Query-Dependent Rank Aggregation with Local Models , 2011, AIRS.

[83]  Harry Shum,et al.  Query Dependent Ranking Using K-nearest Neighbor * , 2022 .

[84]  Tong Zhang,et al.  Subset Ranking Using Regression , 2006, COLT.

[85]  Maunendra Sankar Desarkar,et al.  Displacement Based Unsupervised Metric for Evaluating Rank Aggregation , 2011, PReMI.

[86]  Javad Akbari Torkestani,et al.  An adaptive learning to rank algorithm: Learning automata approach , 2012, Decis. Support Syst..

[87]  Balázs Kégl,et al.  Tune and mix: learning to rank using ensembles of calibrated multi-class classifiers , 2013, Machine Learning.

[88]  Tie-Yan Liu,et al.  Listwise approach to learning to rank: theory and algorithm , 2008, ICML '08.

[89]  Stephen E. Robertson,et al.  SoftRank: optimizing non-smooth rank metrics , 2008, WSDM '08.

[90]  Xinshun Xu,et al.  AdaGP-Rank: Applying boosting technique to genetic programming for learning to rank , 2010, 2010 IEEE Youth Conference on Information, Computing and Telecommunications.

[91]  Klaus Obermayer,et al.  Support vector learning for ordinal regression , 1999 .

[92]  Ryan P. Adams,et al.  Ranking via Sinkhorn Propagation , 2011, ArXiv.

[93]  Shuaiqiang Wang,et al.  Directly optimizing evaluation measures in learning to rank based on the clonal selection algorithm , 2008, SIGIR '08.

[94]  Josiane Mothe,et al.  Nonconvex Regularizations for Feature Selection in Ranking With Sparse SVM , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[95]  Alexander J. Smola,et al.  Direct Optimization of Ranking Measures , 2007, ArXiv.

[96]  D. Sculley,et al.  Large Scale Learning to Rank , 2009 .

[97]  Marcos André Gonçalves,et al.  An evolutionary approach for combining different sources of evidence in search engines , 2009, Inf. Syst..

[98]  Pável Calado,et al.  A combined component approach for finding collection-adapted ranking functions based on genetic programming , 2007, SIGIR.

[99]  Tapio Pahikkala,et al.  An efficient algorithm for learning to rank from preference graphs , 2009, Machine Learning.

[100]  Julien Ah-Pine,et al.  Data Fusion in Information Retrieval Using Consensus Aggregation Operators , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[101]  Quoc V. Le,et al.  Learning to Rank with Nonsmooth Cost Functions , 2006, Neural Information Processing Systems.

[102]  Yong Yu,et al.  Learning to rank with ties , 2008, SIGIR '08.

[103]  Deke Guo,et al.  Your Relevance Feedback Is Essential: Enhancing the Learning to Rank Using the Virtual Feature Based Logistic Regression , 2012, PloS one.

[104]  Kate Saenko,et al.  Proceedings of the 27th AAAI Conference on Artificial Intelligence, AAAI 2013 , 2013, AAAI 2013.

[105]  Nguyen Hoang Viet,et al.  Probabilistic Ranking Support Vector Machine , 2009, ISNN.

[106]  Michael Collins,et al.  Maximum Margin Ranking Algorithms for Information Retrieval , 2010, ECIR.

[107]  Tao Qin,et al.  Learning to Rank with Supplementary Data , 2010, AIRS.

[108]  Rong Jin,et al.  Semi-Supervised Ensemble Ranking , 2008, AAAI.

[109]  Vijay V. Raghavan,et al.  Search Engine Result Aggregation Using Analytical Hierarchy Process , 2010 .

[110]  Jianbin Huang,et al.  QoRank: A query‐dependent ranking model using LSE‐based weighted multiple hyperplanes aggregation for information retrieval , 2011, Int. J. Intell. Syst..

[111]  Javad Akbari Torkestani An adaptive learning automata-based ranking function discovery algorithm , 2012, Journal of Intelligent Information Systems.

[112]  Ke Tang,et al.  Semi-supervised Ranking via List-Wise Approach , 2013, IDEAL.

[113]  Tao Qin,et al.  LETOR: A benchmark collection for research on learning to rank for information retrieval , 2010, Information Retrieval.

[114]  Michelangelo Diligenti,et al.  Learning-to-rank with Prior Knowledge as Global Constraints , 2012 .

[115]  Hang Li Learning to Rank , 2017, Encyclopedia of Machine Learning and Data Mining.

[116]  Alexander J. Smola,et al.  IntervalRank: isotonic regression with listwise and pairwise constraints , 2010, WSDM '10.

[117]  James A. Thom,et al.  Combination of Documents Features Based on Simulated Click-through Data , 2009, ECIR.

[118]  Chiranjib Bhattacharyya,et al.  Structured learning for non-smooth ranking losses , 2008, KDD.

[119]  Fan Li,et al.  Ranking specialization for web search: a divide-and-conquer approach by using topical RankSVM , 2010, WWW '10.

[120]  Arijit De,et al.  Fuzzy Analytical Network Models for Metasearch , 2010, IJCCI.

[121]  Tao Qin,et al.  A general approximation framework for direct optimization of information retrieval measures , 2010, Information Retrieval.

[122]  Tao Qin,et al.  Learning to rank relational objects and its application to web search , 2008, WWW.

[123]  Cristina V. Lopes,et al.  Bagging gradient-boosted trees for high precision, low variance ranking models , 2011, SIGIR.

[124]  Ke Wang,et al.  CCRank: Parallel Learning to Rank with Cooperative Coevolution , 2011, AAAI.

[125]  Ricardo Baeza-Yates,et al.  WCL2R: A Benchmark Collection for Learning to Rank Research with Clickthrough Data , 2010, J. Inf. Data Manag..

[126]  Yong Tang,et al.  Greedy feature selection for ranking , 2011, Proceedings of the 2011 15th International Conference on Computer Supported Cooperative Work in Design (CSCWD).

[127]  Kenneth Wai-Ting Leung,et al.  FP-Rank: An Effective Ranking Approach Based on Frequent Pattern Analysis , 2013, DASFAA.

[128]  Jimmy J. Lin,et al.  Training Efficient Tree-Based Models for Document Ranking , 2013, ECIR.

[129]  Yong Tang,et al.  Learning to rank with a Weight Matrix , 2010, The 2010 14th International Conference on Computer Supported Cooperative Work in Design.

[130]  Chin-Shyurng Fahn,et al.  A multi-stage learning framework for intelligent system , 2013, Expert Syst. Appl..

[131]  Craig MacDonald,et al.  Learning to Select a Ranking Function , 2010, ECIR.

[132]  Hongyuan Zha,et al.  Contextualized web search: query-dependent ranking and social media search , 2010 .

[133]  Vassilis Plachouras,et al.  Online learning from click data for sponsored search , 2008, WWW.

[134]  Avare Stewart,et al.  Epidemic Intelligence for the Crowd, by the Crowd , 2012, ICWSM.

[135]  Juan M. Fernández-Luna,et al.  Direct Optimization of Evaluation Measures in Learning to Rank Using Particle Swarm , 2010, 2010 Workshops on Database and Expert Systems Applications.

[136]  Tran The Truyen,et al.  ConeRANK: Ranking as Learning Generalized Inequalities , 2012, ArXiv.

[137]  Paul N. Bennett,et al.  Robust ranking models via risk-sensitive optimization , 2012, SIGIR '12.

[138]  Arijit De,et al.  On the Role of Compensatory Operators in Fuzzy Result Merging for Metasearch , 2013, PReMI.

[139]  Andrea Argentini,et al.  Ranking Aggregation Based on Belief Function Theory , 2012 .

[140]  Vijay V. Raghavan,et al.  Weighted Fuzzy Aggregation for Metasearch: An Application of Choquet Integral , 2012, IPMU.

[141]  Thorsten Joachims,et al.  Online Learning with Preference Feedback , 2011, ArXiv.

[142]  Yong Tang,et al.  Rank Aggregation via Low-Rank and Structured-Sparse Decomposition , 2013, AAAI.

[143]  Jie Wu,et al.  Sparse Learning-to-Rank via an Efficient Primal-Dual Algorithm , 2013, IEEE Transactions on Computers.

[144]  Hugo Larochelle,et al.  Loss-sensitive Training of Probabilistic Conditional Random Fields , 2011, ArXiv.

[145]  Dong Li,et al.  Uncertainty-based active ranking for document retrieval , 2008, 2008 International Conference on Machine Learning and Cybernetics.

[146]  Avinava Dubey,et al.  Efficient and Accurate Local Learning for Ranking , 2009 .

[147]  Pu-Jen Cheng,et al.  Learning to rank from Bayesian decision inference , 2009, CIKM.

[148]  Kilian Q. Weinberger,et al.  Web-Search Ranking with Initialized Gradient Boosted Regression Trees , 2010, Yahoo! Learning to Rank Challenge.

[149]  Weijian Ni,et al.  An Ensemble Approach to Learning to Rank , 2008, 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery.

[150]  Maksims Volkovs,et al.  CRF framework for supervised preference aggregation , 2013, CIKM.

[151]  Tie-Yan Liu,et al.  Learning to Rank for Information Retrieval , 2011 .

[152]  Guang-Bin Huang,et al.  Learning to Rank with Extreme Learning Machine , 2013, Neural Processing Letters.

[153]  T. Pahikkala Greedy RankRLS : a Linear Time Algorithm for Learning Sparse Ranking Models , 2010 .

[154]  Tian Xia,et al.  Direct optimization of ranking measures for learning to rank models , 2013, KDD.

[155]  Wei Gao,et al.  Democracy is good for ranking: towards multi-view rank learning and adaptation in web search , 2014, WSDM.

[156]  P. Rousseeuw,et al.  The Bagplot: A Bivariate Boxplot , 1999 .

[157]  Tao Qin,et al.  A New Probabilistic Model for Rank Aggregation , 2010, NIPS.