Learning Linear Bayesian Networks with Latent Variables

This work considers the problem of learning linear Bayesian networks when some of the variables are unobserved. Identifiability and efficient recovery from low-order observable moments are established under a novel graphical constraint. The constraint concerns the expansion properties of the underlying directed acyclic graph (DAG) between observed and unobserved variables in the network, and it is satisfied by many natural families of DAGs that include multi-level DAGs, DAGs with effective depth one, as well as certain families of polytrees.

[1]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[2]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[3]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[4]  R. P. McDonald,et al.  Structural Equations with Latent Variables , 1989 .

[5]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[6]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[7]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[8]  Tandy J. Warnow,et al.  A Few Logs Suffice to Build (almost) All Trees: Part II , 1999, Theor. Comput. Sci..

[9]  David Maxwell Chickering,et al.  Optimal Structure Identification With Greedy Search , 2002, J. Mach. Learn. Res..

[10]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[11]  Michael I. Jordan,et al.  Beyond Independent Components: Trees and Clusters , 2003, J. Mach. Learn. Res..

[12]  E. Oja,et al.  Independent Component Analysis , 2001 .

[13]  Thomas S. Richardson,et al.  Towards Characterizing Markov Equivalence Classes for Directed Acyclic Graphs with Latent Variables , 2005, UAI.

[14]  Richard Scheines,et al.  Learning the Structure of Linear Latent Variable Models , 2006, J. Mach. Learn. Res..

[15]  Aapo Hyvärinen,et al.  A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..

[16]  Fabian J. Theis,et al.  Towards a general independent subspace analysis , 2006, NIPS.

[17]  Wei Li,et al.  Pachinko allocation: DAG-structured mixture models of topic correlations , 2006, ICML.

[18]  John D. Lafferty,et al.  A correlated topic model of Science , 2007, 0708.3601.

[19]  Bernhard Schölkopf,et al.  Nonlinear causal discovery with additive noise models , 2008, NIPS.

[20]  Elchanan Mossel,et al.  Reconstruction of Markov Random Fields from Samples: Some Observations and Algorithms , 2007, SIAM J. Comput..

[21]  J. Lafferty,et al.  High-dimensional Ising model selection using ℓ1-regularized logistic regression , 2010, 1010.0311.

[22]  Antonio Torralba,et al.  Exploiting hierarchical context on a large database of object categories , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  A. Willsky,et al.  Latent variable graphical model selection via convex optimization , 2010 .

[24]  Le Song,et al.  Spectral Methods for Learning Multivariate Latent Tree Structure , 2011, NIPS.

[25]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[26]  Sham M. Kakade,et al.  Robust Matrix Decomposition With Sparse Corruptions , 2011, IEEE Transactions on Information Theory.

[27]  Bernhard Schölkopf,et al.  Identifiability of Causal Graphs using Functional Models , 2011, UAI.

[28]  Anima Anandkumar,et al.  Learning Loopy Graphical Models with Latent Variables: Efficient Methods and Guarantees , 2012, The Annals of Statistics.

[29]  Huan Wang,et al.  Exact Recovery of Sparsely-Used Dictionaries , 2012, COLT.

[30]  Pablo A. Parrilo,et al.  Diagonal and Low-Rank Matrix Decompositions, Correlation Matrices, and Ellipsoid Fitting , 2012, SIAM J. Matrix Anal. Appl..

[31]  J. Peters,et al.  Identifiability of Gaussian structural equation models with equal error variances , 2012, 1205.2536.

[32]  Anima Anandkumar,et al.  A Spectral Algorithm for Latent Dirichlet Allocation , 2012, Algorithmica.