Learning Linear Bayesian Networks with Latent Variables
暂无分享,去创建一个
Adel Javanmard | Anima Anandkumar | Sham M. Kakade | Daniel J. Hsu | S. Kakade | Anima Anandkumar | Adel Javanmard
[1] C. N. Liu,et al. Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.
[2] A. Zellner. An Introduction to Bayesian Inference in Econometrics , 1971 .
[3] Judea Pearl,et al. Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.
[4] R. P. McDonald,et al. Structural Equations with Latent Variables , 1989 .
[5] P. Spirtes,et al. Causation, prediction, and search , 1993 .
[6] Steffen L. Lauritzen,et al. Graphical models in R , 1996 .
[7] Sean R. Eddy,et al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .
[8] Tandy J. Warnow,et al. A Few Logs Suffice to Build (almost) All Trees: Part II , 1999, Theor. Comput. Sci..
[9] David Maxwell Chickering,et al. Optimal Structure Identification With Greedy Search , 2002, J. Mach. Learn. Res..
[10] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[11] Michael I. Jordan,et al. Beyond Independent Components: Trees and Clusters , 2003, J. Mach. Learn. Res..
[12] E. Oja,et al. Independent Component Analysis , 2001 .
[13] Thomas S. Richardson,et al. Towards Characterizing Markov Equivalence Classes for Directed Acyclic Graphs with Latent Variables , 2005, UAI.
[14] Richard Scheines,et al. Learning the Structure of Linear Latent Variable Models , 2006, J. Mach. Learn. Res..
[15] Aapo Hyvärinen,et al. A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..
[16] Fabian J. Theis,et al. Towards a general independent subspace analysis , 2006, NIPS.
[17] Wei Li,et al. Pachinko allocation: DAG-structured mixture models of topic correlations , 2006, ICML.
[18] John D. Lafferty,et al. A correlated topic model of Science , 2007, 0708.3601.
[19] Bernhard Schölkopf,et al. Nonlinear causal discovery with additive noise models , 2008, NIPS.
[20] Elchanan Mossel,et al. Reconstruction of Markov Random Fields from Samples: Some Observations and Algorithms , 2007, SIAM J. Comput..
[21] J. Lafferty,et al. High-dimensional Ising model selection using ℓ1-regularized logistic regression , 2010, 1010.0311.
[22] Antonio Torralba,et al. Exploiting hierarchical context on a large database of object categories , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[23] A. Willsky,et al. Latent variable graphical model selection via convex optimization , 2010 .
[24] Le Song,et al. Spectral Methods for Learning Multivariate Latent Tree Structure , 2011, NIPS.
[25] Pablo A. Parrilo,et al. Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..
[26] Sham M. Kakade,et al. Robust Matrix Decomposition With Sparse Corruptions , 2011, IEEE Transactions on Information Theory.
[27] Bernhard Schölkopf,et al. Identifiability of Causal Graphs using Functional Models , 2011, UAI.
[28] Anima Anandkumar,et al. Learning Loopy Graphical Models with Latent Variables: Efficient Methods and Guarantees , 2012, The Annals of Statistics.
[29] Huan Wang,et al. Exact Recovery of Sparsely-Used Dictionaries , 2012, COLT.
[30] Pablo A. Parrilo,et al. Diagonal and Low-Rank Matrix Decompositions, Correlation Matrices, and Ellipsoid Fitting , 2012, SIAM J. Matrix Anal. Appl..
[31] J. Peters,et al. Identifiability of Gaussian structural equation models with equal error variances , 2012, 1205.2536.
[32] Anima Anandkumar,et al. A Spectral Algorithm for Latent Dirichlet Allocation , 2012, Algorithmica.