Tackling complexity: Understanding the food-energy-environment nexus in Ethiopia's Lake Tana Sub-basin

Ethiopia has embarked upon a rapid growth and development trajectory aiming to become a middle-income country by 2025. To achieve this goal, an agricultural development led industrialization strategy is being implemented which aims to intensify and transform agriculture, thereby boosting yields and, subsequently, economic returns. At the same time, the energy use which currently consists of more than 90% traditional biomass use is shifting towards increasing electricity production predominantly from large-scale hydropower plants, with the aim to improve access to modern energy sources. While the targets are commendable it is not clear that either all direct impacts or potential conflicts between goals have been considered. In this paper we evaluate and compare the impacts of alternative development trajectories pertaining to agriculture, energy and environment for a case-study location, the Lake Tana Subbasin, with a focus on current national plans and accounting for cross-sector interlinkages and competing resource use: the food-energy-environment nexus. Applying a nexus toolkit (WEAP and LEAP) in participatory scenario development we compare and evaluate three different future scenarios. We conclude that the two processes – agricultural transformation and energy transition – are interdependent and could be partly competitive. As agriculture becomes increasingly intensified, it relies on more energy. At the same time, the energy system will, at least in the foreseeable future, continue to be largely supported by biomass, partly originating from croplands. Two outstanding dilemmas pertaining to resources scarcity were identified. Water needed for energy and agricultural production, and to sustain ecosystem services, sometimes exceeds water availability. Moreover, the region seems to be hitting a biomass ceiling where the annual increments in biomass from all terrestrial ecosystems are in the same order of magnitude as biomass needs for food, fodder and fuel. We propose that a stakeholder-driven nexus approach, underpinned by quantitative and spatially explicit scenario and planning tools, can help to resolve these outstanding dilemmas and can support more consistent policy and decision making, towards improved resource productivities, lower environmental pressures and enhanced human securities.

[1]  Dennis R. Heldman,et al.  Encyclopedia of agricultural, food, and biological engineering , 2014 .

[2]  C. Ringler,et al.  The nexus across water, energy, land and food (WELF): potential for improved resource use efficiency? , 2013 .

[3]  H. Velthuizen,et al.  Integrated analysis of climate change, land-use, energy and water strategies , 2013 .

[4]  H. Rogner,et al.  Climate, land, energy and water (CLEW) interlinkages in Burkina Faso: an analysis of agricultural intensification and bioenergy production. , 2012 .

[5]  Dolf Gielen,et al.  Considering the energy, water and food nexus: Towards an integrated modelling approach , 2011 .

[6]  A. Kefale The (un)making of opposition coalitions and the challenge of democratization in Ethiopia, 1991–2011 , 2011 .

[7]  D. Rahmato Land to Investors. Large-Scale Land Transfers in Ethiopia , 2011 .

[8]  Harry Verhoeven Black Gold for Blue Gold? Sudan's Oil, Ethiopia's Water and Regional Integration , 2011 .

[9]  Rabi H. Mohtar,et al.  Water, Energy, and Food: The Ultimate Nexus , 2010 .

[10]  R. Srinivasan,et al.  Hydrological Modelling in the Lake Tana Basin, Ethiopia Using SWAT Model , 2008 .

[11]  J. Alcamo,et al.  Scenarios as Tools for International Environmental Assessments , 2002 .

[12]  G. Fischer,et al.  Adding value with CLEWS – Modelling the energy system and its interdependencies for Mauritius , 2014 .

[13]  Wondwossen Sintayehu Ethiopia’s Climate Resilient Green Economy Strategy , 2013 .

[14]  How Understanding Social Networks Can Help to Govern the Nexus: a Case from the Blue Nile Basin , 2013 .

[15]  R Bleischwitz,et al.  Resource curse redux : linking food and water stress with global resource supply vulnerabilities , 2012 .

[16]  H. Hoff Understanding the nexus : Background paper for the Bonn2011 Nexus Conference , 2011 .

[17]  J. Arbache,et al.  The little data book on Africa 2007 , 2008 .