Implementation of Majority Voting Rules

In this paper, I study implementation by agenda voting, a straightforward mechanism that is widely used in practice. The main result establishes that any candidate neutral majority voting rule which satises the two necessary conditions identied

[1]  Alex Samorodnitsky,et al.  A new perspective on implementation by voting trees , 2011, Random Struct. Algorithms.

[2]  Thomas Schwartz Cyclic tournaments and cooperative majority voting: A solution , 1990 .

[3]  Eyal Winter,et al.  Multi-stage voting, sequential elimination and Condorcet consistency , 2009, J. Econ. Theory.

[4]  Bhaskar Dutta,et al.  EFFECTIVITY FUNCTIONS AND ACCEPTABLE GAME FORMS , 1984 .

[5]  Toby Walsh,et al.  Winner determination in voting trees with incomplete preferences and weighted votes , 2011, Autonomous Agents and Multi-Agent Systems.

[6]  J. V. Howard,et al.  A Social Choice Rule and its Implementation in Perfect Equilibrium (Now published in Journal of Economic Theory, 56 (1992), pp.142-159.) , 1992 .

[7]  Thomas Schwartz Parliamentary procedure: principal forms and political effects , 2008 .

[8]  Jean-François Laslier,et al.  Composition-consistent tournament solutions and social choice functions , 1996 .

[9]  Felix Brandt,et al.  Tournament Solutions Extensions of Maximality and their Applications to Decision-Making , 2009 .

[10]  Arunava Sen,et al.  VIRTUAL IMPLEMENTATION IN NASH EQUILIBRIUM , 1991 .

[11]  Peter C. Ordeshook,et al.  Agendas and the Control of Political Outcomes , 1987, American Political Science Review.

[12]  Barry R. Weingast,et al.  Uncovered Sets and Sophisticated Voting Outcomes with Implications for Agenda Institutions , 1984 .

[13]  Isabelle Stanton Manipulating Single-Elimination Tournaments in the Braverman-Mossel Model , 2011 .

[14]  Felix Brandt,et al.  Minimal stable sets in tournaments , 2008, J. Econ. Theory.

[15]  H. Landau On dominance relations and the structure of animal societies: III The condition for a score structure , 1953 .

[16]  M. Jackson,et al.  Strategic Candidacy and Voting Procedures , 2001 .

[17]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[18]  Olivier Hudry,et al.  On the complexity of Slater's problems , 2010, Eur. J. Oper. Res..

[19]  Vincent Conitzer,et al.  How hard is it to control sequential elections via the agenda , 2009, IJCAI 2009.

[20]  Peter J. Coughlan,et al.  A social choice function implementable via backward induction with values in the ultimate uncovered set , 1999 .

[21]  Alex D. Scott,et al.  The minimal covering set in large tournaments , 2012, Soc. Choice Welf..

[22]  Matthew O. Jackson,et al.  Voting by Successive Elimination and Strategic Candidacy , 2002, J. Econ. Theory.

[23]  John. Moore,et al.  Subgame Perfect Implementation , 1988 .

[24]  N. Schofield Social choice , 2020, Game Theory.

[25]  S. Hart,et al.  Handbook of Game Theory with Economic Applications , 1992 .

[26]  Robert D. Kleinberg,et al.  Nonmanipulable Randomized Tournament Selections , 2010, Proceedings of the AAAI Conference on Artificial Intelligence.

[27]  Nicholas R. Miller A New Solution Set for Tournaments and Majority Voting: Further Graph- Theoretical Approaches to the Theory of Voting , 1980 .

[28]  Vincent Conitzer,et al.  Determining Possible and Necessary Winners under Common Voting Rules Given Partial Orders , 2008, AAAI.

[29]  W. Armbruster,et al.  Efficient, Anonymous, and Neutral Group Decision Procedures , 1983 .

[30]  Ayzerman,et al.  Theory of choice , 1995 .

[31]  David C. Fisher,et al.  Optimal strategies for random tournament games , 1995 .

[32]  William Thomson,et al.  Concepts Of Implementation , 1996 .

[33]  Olivier Hudry J.-F. Laslier, "Tournament solutions and majority voting", Berlin, Springer, 1997. Préface d'Hervé Moulin , 1998 .

[34]  Dilip Abreu,et al.  Subgame perfect implementation: A necessary and almost sufficient condition , 1990 .

[35]  H. Vartiainen Endogenous agenda formation processes with the one-deviation property , 2014 .

[36]  Virginia Vassilevska Williams Fixing a Tournament , 2010, AAAI.

[37]  M. Sanver,et al.  A new monotonicity condition for tournament solutions , 2010 .

[38]  D. Black On the Rationale of Group Decision-making , 1948, Journal of Political Economy.

[39]  Peter C. Ordeshook,et al.  Agendas, Strategic Voting, and Signaling with Incomplete Information , 1988 .

[40]  W. Riker,et al.  The Paradox of Voting and Congressional Rules for Voting on Amendments , 1958, American Political Science Review.

[41]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .

[42]  P. Healy,et al.  Preference domains and the monotonicity of condorcet extensions , 2015 .

[43]  M. Remzi Sanver,et al.  On combining implementable social choice rules , 2007, Games Econ. Behav..

[44]  Motty Perry,et al.  Virtual Implementation in Backwards Induction , 1996 .

[45]  Michel Breton,et al.  Covering relations, closest orderings and hamiltonian bypaths in tournaments , 1991 .

[46]  A. Sen,et al.  Choice Functions and Revealed Preference , 1971 .

[47]  J. Laffont,et al.  Implementation, Contracts, and Renegotiation in Environments With Complete Information , 1992 .

[48]  Michele Lombardi,et al.  Minimal covering set solutions , 2008, Soc. Choice Welf..

[49]  J. H. Smith AGGREGATION OF PREFERENCES WITH VARIABLE ELECTORATE , 1973 .

[50]  Levent Kutlu Intersection of Nash implementable social choice correspondences , 2008, Math. Soc. Sci..

[51]  J. Banks Sophisticated voting outcomes and agenda control , 1984 .

[52]  John D. Dixon The Maximum Order of the Group of a Tournament , 1967, Canadian Mathematical Bulletin.

[53]  B. Rasch,et al.  Parliamentary Floor Voting Procedures and Agenda Setting in Europe , 2000 .

[54]  Ariel D. Procaccia,et al.  The learnability of voting rules , 2009, Artif. Intell..

[55]  Gilbert Laffond,et al.  Weak covering relations , 1994 .

[56]  Olivier Hudry A note on “Banks winners in tournaments are difficult to recognize” by G. J. Woeginger , 2004, Soc. Choice Welf..

[57]  Jean-François Laslier,et al.  Condorcet choice correspondences: A set-theoretical comparison , 1995 .

[58]  Walter Bossert,et al.  Every Choice Function is Backwards-Induction Rationalizable , 2013 .

[59]  Implementing alternative voting in kingmaker trees , 1990 .

[60]  B. Douglas Bernheim,et al.  A Solution Concept for Majority Rule in Dynamic Settings , 2007 .

[61]  Michael A. Trick,et al.  Small Binary Voting Trees , 2006 .

[62]  Jeffrey S. Banks,et al.  Equilibrium Outcomes in Two-Stage Amendment Procedures , 1989 .

[63]  E. M. Penn A distributive N-amendment game with endogenous agenda formation , 2008 .

[64]  William Thomson,et al.  Monotonic extensions on economic domains , 1999 .

[65]  Bhaskar Dutta Covering sets and a new condorcet choice correspondence , 1988 .

[66]  M. Maróti,et al.  The variety generated by tournaments , 1999 .

[67]  M. Aizerman New problems in the general choice theory , 1985 .

[68]  Hitoshi Matsushima A new approach to the implementation problem , 1988 .

[69]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[70]  P. Fishburn Condorcet Social Choice Functions , 1977 .

[71]  H. Moulin The strategy of social choice , 1983 .

[72]  Michael A. Trick,et al.  Sophisticated voting rules: the case of two tournaments , 1996 .

[73]  Yves Sprumont,et al.  Weakened WARP and top-cycle choice rules , 2008 .

[74]  Isabelle Stanton,et al.  Rigging Tournament Brackets for Weaker Players , 2011, IJCAI.

[75]  Arunava Sen,et al.  The implementation of social choice functions via social choice correspondences: A general formulation and a limit result , 1995 .

[76]  Jean-François Laslier,et al.  Tournament Solutions And Majority Voting , 1997 .

[77]  David Austen-Smith,et al.  Sophisticated Sincerity: Voting Over Endogenous Agendas , 1987, American Political Science Review.

[78]  Olivier Hudry,et al.  A survey on the complexity of tournament solutions , 2009, Math. Soc. Sci..

[79]  Matthew O. Jackson,et al.  A crash course in implementation theory , 2001, Soc. Choice Welf..

[80]  Paul D. Seymour,et al.  A counterexample to a conjecture of Schwartz , 2013, Soc. Choice Welf..

[81]  John Duggan,et al.  Endogenous Voting Agendas , 2006, Soc. Choice Welf..

[82]  Toby Walsh,et al.  Winner Determination in Sequential Majority Voting , 2007, IJCAI.

[83]  Richard Edwin Stearns,et al.  The Voting Problem , 1959 .

[84]  P. Slater Inconsistencies in a schedule of paired comparisons , 1961 .

[85]  R. McKelvey,et al.  A multistage game representation of sophisticated voting for binary procedures , 1978 .

[86]  H. Moulin Choosing from a tournament , 1986 .

[87]  Sanjay Srivastava,et al.  Implementation via backward induction , 1992 .

[88]  John Duggan,et al.  A Note on Backward Induction, Iterative Elimination of Weakly Dominated Strategies, and Voting in Binary Agendas , 2003 .

[89]  H. Moulin Dominance Solvable Voting Schemes , 1979 .

[90]  Hannu Vartiainen,et al.  Subgame perfect implementation: A full characterization , 2007, J. Econ. Theory.

[91]  Arunava Sen,et al.  Implementing generalized Condorcet social choice functions via backward induction , 1993 .

[92]  Zizhuo Wang,et al.  A unified framework for dynamic pari-mutuel information market design , 2009, EC '09.

[93]  L. Moser,et al.  The Theory of Round Robin Tournaments , 1966 .

[94]  I. Good A note on condorcet sets , 1971 .

[95]  Antonio Rangel,et al.  The Power of the Last Word in Legislative Policy Making , 2006 .

[96]  E. Maskin,et al.  Implementation Theory∗ , 2002 .

[97]  M. Breton,et al.  The Bipartisan Set of a Tournament Game , 1993 .

[98]  Patrick Hummel,et al.  Ëççááä Ëëááaeaeae Ïçêãáaeae Èèèê ½¾¿¿ , 2022 .

[99]  Benjamin Ward,et al.  Majority rule and allocation , 1961 .

[100]  Matthew O. Jackson,et al.  Undominated Nash Implementation in Bounded Mechanisms , 1994 .

[101]  B. Weingast,et al.  Institutionalizing Majority Rule: A Social Choice Theory with Policy Implications , 1982 .

[102]  David C. Mcgarvey A THEOREMI ON THE CONSTRUCTION OF VOTING PARADOXES , 1953 .

[103]  Thomas R. Palfrey,et al.  Nash Implementation Using Undominated Strategies , 1991 .

[104]  D. Mueller Voting by veto , 1978 .

[105]  Sean M. Horan Choice by Tournament , 2011 .

[106]  Tomas Sjöström,et al.  Implementation in perfect equilibria , 1993 .

[107]  Ki Hang Kim,et al.  Dominance solvable games and trees , 1982, Math. Soc. Sci..

[108]  D. Black The theory of committees and elections , 1959 .

[109]  T. Schwartz Rationality and the Myth of the Maximum , 1972 .

[110]  Robin Farquharson,et al.  Theory of voting , 1969 .

[111]  F. Brandt,et al.  Computational Social Choice: Prospects and Challenges , 2011, FET.

[112]  Isabelle Stanton,et al.  Manipulating Stochastically Generated Single-Elimination Tournaments for Nearly All Players , 2011, WINE.

[113]  L. Moser,et al.  On the representation of directed graphs as unions of orderings , 1964 .

[114]  Sean M. Horan Implementation by Agenda Voting , 2009 .

[115]  Jean-François Laslier,et al.  The Copeland Measure of Condorcet Choice Functions , 1994, Discret. Appl. Math..

[116]  Lin Zhou,et al.  Rationalizability of choice functions by game trees , 2007, J. Econ. Theory.

[117]  Hervé Moulin,et al.  IMPLEMENTING EFFICIENT, ANONYMOUS AND NEUTRAL SOCIAL CHOICE FUNCTIONS , 1980 .

[118]  Vincent Conitzer,et al.  Strategic sequential voting in multi-issue domains and multiple-election paradoxes , 2011, EC '11.

[119]  Hitoshi Matsushima,et al.  Virtual implementation in iteratively undominated strategies: complete information , 1992 .

[120]  Kenneth O. May,et al.  A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision , 1952 .

[121]  Toby Walsh,et al.  Manipulating Tournaments in Cup and Round Robin Competitions , 2009, ADT.

[122]  Matthew O. Jackson,et al.  Equilibrium agenda formation , 2004, Soc. Choice Welf..

[123]  Michele Lombardi,et al.  Uncovered set choice rules , 2007, Soc. Choice Welf..

[124]  K. Arrow,et al.  Handbook of Social Choice and Welfare , 2011 .

[125]  Yusufcan Masatlioglu,et al.  A foundation for strategic agenda voting , 2014, Games Econ. Behav..

[126]  Nicholas R. Miller,et al.  Graph- Theoretical Approaches to the Theory of Voting* , 1977 .

[127]  Hannu Vartiainen,et al.  Subgame perfect implementation of voting rules via randomized mechanisms , 2007, Soc. Choice Welf..

[128]  Jennifer Iglesias,et al.  Computing with Voting Trees , 2012, SIAM J. Discret. Math..

[129]  E. Maskin Nash Equilibrium and Welfare Optimality , 1999 .

[130]  Choice Using Cyclic Tournament Relations , 2001 .

[131]  Nicholas R. Miller The Covering Relation in Tournaments: Two Corrections , 1983 .

[132]  Moshé Machover,et al.  Sequential voting by veto: Making the Mueller-Moulin algorithm more versatile , 1992 .