A Wideband Class-AB Power Amplifier With 29–57-GHz AM–PM Compensation in 0.9-V 28-nm Bulk CMOS

A wideband amplitude to phase (AM–PM) compensated class-AB power amplifier (PA) suitable for highly integrated fifth-generation phased arrays is designed in 0.9-V 28-nm CMOS without RF ultra-thick top metal. Design techniques to realize broadband impedance transformation, power division/combining, and phase distortion linearization are discussed. Further, second-order effects due to practical layout constrains imposed by deep-scaled technologies are addressed and simple design solutions are proposed. The designed PA shows a measured <inline-formula> <tex-math notation="LaTeX">$S_{21} -3$ </tex-math></inline-formula> dB bandwidth (BW) from 29 to 57 GHz (65%) with <inline-formula> <tex-math notation="LaTeX">$|\text {AM}-\text {PM}|<1 {^{\circ }}$ </tex-math></inline-formula> up to <inline-formula> <tex-math notation="LaTeX">$P_{1~\text {dB}}$ </tex-math></inline-formula>. The measured <inline-formula> <tex-math notation="LaTeX">$P_{\mathrm{ sat}}$ </tex-math></inline-formula> is 15.1 dBm over >56% <inline-formula> <tex-math notation="LaTeX">$\text {BW}_{-1~\text {dB}}$ </tex-math></inline-formula>, with a peak power added efficiency of 24.2%. When a signal with wide modulation BW is applied, the realized PA enables up to 10.1-, 8.9-, and 5.9-dBm average <inline-formula> <tex-math notation="LaTeX">$P_{\mathrm{ OUT}}$ </tex-math></inline-formula> while amplifying a 1.5-, 3-, and 6-Gb/s 64-quadratic-amplitude modulation, respectively, at 34 GHz. The in-band and out-of-band linearity measured in error vector magnitude and adjacent channel power ratio are always better than −25 dB and −30 dBc, respectively, without any digital pre-distortion.

[1]  Leonid Belostotski,et al.  Integrated Design of a Class-J Power Amplifier , 2013, IEEE Transactions on Microwave Theory and Techniques.

[2]  Seizo Onoe 1.3 Evolution of 5G mobile technology toward 1 2020 and beyond , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[3]  Bumman Kim,et al.  Highly Linear mm-Wave CMOS Power Amplifier , 2016, IEEE Transactions on Microwave Theory and Techniques.

[4]  L.E. Larson,et al.  A capacitance-compensation technique for improved linearity in CMOS class-AB power amplifiers , 2004, IEEE Journal of Solid-State Circuits.

[5]  Kaushik Sengupta,et al.  Frequency Reconfigurable mm-Wave Power Amplifier With Active Impedance Synthesis in an Asymmetrical Non-Isolated Combiner: Analysis and Design , 2017, IEEE Journal of Solid-State Circuits.

[6]  Kaushik Sengupta,et al.  A digital mm-Wave PA architecture with Simultaneous Frequency and back-off Reconfigurability , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[7]  Pietro Andreani,et al.  A high-swing complementary class-C VCO , 2013, 2013 Proceedings of the ESSCIRC (ESSCIRC).

[8]  Marco Vigilante,et al.  To EVM or Two EVMs?: An Answer to the Question , 2017, IEEE Solid-State Circuits Magazine.

[9]  Gang Liu,et al.  A 5.8 GHz 1 V Linear Power Amplifier Using a Novel On-Chip Transformer Power Combiner in Standard 90 nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[10]  Marco Vigilante,et al.  On the Design of Wideband Transformer-Based Fourth Order Matching Networks for ${E}$ -Band Receivers in 28-nm CMOS , 2017, IEEE Journal of Solid-State Circuits.

[11]  Patrick Reynaert,et al.  A high-efficiency linear power amplifier for 28GHz mobile communications in 40nm CMOS , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[12]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[13]  Chandrakanth Reddy Chappidi,et al.  Globally Optimal Matching Networks With Lossy Passives and Efficiency Bounds , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  Takashi Ohira,et al.  The kQ Product as Viewed by an Analog Circuit Engineer , 2017, IEEE Circuits and Systems Magazine.

[15]  Andrea Bevilacqua,et al.  A 40–67GHz power amplifier with 13dBm PSAT and 16% PAE in 28 nm CMOS LP , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[16]  Fei Wang,et al.  2.1 A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[17]  P. Reynaert,et al.  A 60-GHz Power Amplifier With AM–PM Distortion Cancellation in 40-nm CMOS , 2016, IEEE Transactions on Microwave Theory and Techniques.

[18]  Willy Sansen,et al.  analog design essentials , 2011 .

[19]  Patrick Reynaert,et al.  Highly Linear Fully Integrated Wideband RF PA for LTE-Advanced in 180-nm SOI , 2015, IEEE Transactions on Microwave Theory and Techniques.

[20]  Jacques C. Rudell,et al.  An Ultra-Wideband IF Millimeter-Wave Receiver With a 20 GHz Channel Bandwidth Using Gain-Equalized Transformers , 2016, IEEE Journal of Solid-State Circuits.

[21]  Patrick Reynaert,et al.  An E-Band Power Amplifier With Broadband Parallel-Series Power Combiner in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[22]  J.R. Long,et al.  Monolithic transformers for silicon RF IC design , 2000, IEEE Journal of Solid-State Circuits.

[23]  Steve C. Cripps,et al.  Advanced Techniques in RF Power Amplifier Design , 2002 .

[24]  Hua Wang,et al.  A CMOS Broadband Power Amplifier With a Transformer-Based High-Order Output Matching Network , 2010, IEEE Journal of Solid-State Circuits.

[25]  Ali Hajimiri,et al.  Fully integrated CMOS power amplifier design using the distributed active-transformer architecture , 2002, IEEE J. Solid State Circuits.

[26]  H. Zirath,et al.  A comprehensive analysis of IMD behavior in RF CMOS power amplifiers , 2004, IEEE Journal of Solid-State Circuits.

[27]  Marco Vigilante,et al.  A 29-to-57GHz AM-PM compensated class-AB power amplifier for 5G phased arrays in 0.9V 28nm bulk CMOS , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[28]  Andrea Bevilacqua,et al.  A 40–67 GHz Power Amplifier With 13 dBm ${\rm P}_{\rm SAT}$ and 16% PAE in 28 nm CMOS LP , 2015, IEEE Journal of Solid-State Circuits.

[29]  Kaushik Sengupta,et al.  20.2 A frequency-reconfigurable mm-Wave power amplifier with active-impedance synthesis in an asymmetrical non-isolated combiner , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[30]  James F. Buckwalter,et al.  A PMOS mm-wave power amplifier at 77 GHz with 90 mW output power and 24% efficiency , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[31]  Patrick Reynaert,et al.  Analysis and Optimization of Transformer-Based Power Combining for Back-Off Efficiency Enhancement , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  Ahmad Mirzaei,et al.  A Blocker-Tolerant, Noise-Cancelling Receiver Suitable for Wideband Wireless Applications , 2012, IEEE Journal of Solid-State Circuits.

[33]  Robert Bogdan Staszewski,et al.  A wideband 60 GHz class-E/F2 power amplifier in 40nm CMOS , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[34]  Kwang-Jin Koh,et al.  Integrated Inverse Class-F Silicon Power Amplifiers for High Power Efficiency at Microwave and mm-Wave , 2016, IEEE Journal of Solid-State Circuits.

[35]  Sherif Shakib,et al.  2.7 A wideband 28GHz power amplifier supporting 8×100MHz carrier aggregation for 5G in 40nm CMOS , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[36]  Patrick Reynaert,et al.  A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[37]  Jacqueline Grennon , 2nd Ed. , 2002, The Journal of nervous and mental disease.

[38]  Christian Fager,et al.  Symmetrical Doherty Power Amplifier With Extended Efficiency Range , 2016, IEEE Transactions on Microwave Theory and Techniques.

[39]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[40]  Bikramjit Singh,et al.  Intermediate description of the spectrum needs and usage principles , 2013 .

[41]  Patrick Reynaert,et al.  Transformer-Based Uneven Doherty Power Amplifier in 90 nm CMOS for WLAN Applications , 2012, IEEE Journal of Solid-State Circuits.

[42]  Patrick Reynaert,et al.  60GHz power amplifier with distributed active transformer and local feedback , 2010, 2010 Proceedings of ESSCIRC.

[43]  Asad A. Abidi,et al.  Processes of AM-PM Distortion in Large-Signal Single-FET Amplifiers , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[44]  Matteo Bassi,et al.  A 15 GHz-bandwidth 20dBm PSAT power amplifier with 22% PAE in 65nm CMOS , 2015, 2015 IEEE Custom Integrated Circuits Conference (CICC).

[45]  Willy M. C. Sansen,et al.  1.3 Analog CMOS from 5 micrometer to 5 nanometer , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[46]  Dongsu Kim,et al.  Envelope-Tracking CMOS Power Amplifier Module for LTE Applications , 2013, IEEE Transactions on Microwave Theory and Techniques.

[47]  Patrick Reynaert,et al.  Dual-Mode CMOS Doherty LTE Power Amplifier With Symmetric Hybrid Transformer , 2015, IEEE Journal of Solid-State Circuits.

[48]  Heng Zhang,et al.  Linearization Techniques for CMOS Low Noise Amplifiers: A Tutorial , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[49]  Earl McCune,et al.  Practical Digital Wireless Signals , 2010 .