Electrochemical properties of thermally treated platinized Ebonex® with low content of Pt

[1]  A. Velichenko,et al.  Oxidation of Cr3+-Ions at the Composite ТіОх/РtОу Electrode , 2013 .

[2]  A. Velichenko,et al.  ANODIC DECOMPOSITION OF COMPLEXING AGENTS IN ELECTROLYTES BASED ON Cr(III) SALTS AT COMPOSITE ТіОХ/РtОУ ELECTRODES , 2012 .

[3]  D. Bejan,et al.  On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex® anodes , 2012 .

[4]  F. Walsh,et al.  The continuing development of Magnéli phase titanium sub-oxides and Ebonex® electrodes , 2010 .

[5]  D. Bejan,et al.  Electrochemical oxidation of sulfide ion in synthetic sour brines using periodic polarity reversal at Ebonex® electrodes , 2010 .

[6]  D. Bejan,et al.  Mechanistic investigation of the conductive ceramic Ebonex® as an anode material , 2009 .

[7]  M. Jakšić,et al.  Spillover of primary oxides as a dynamic catalytic effect of interactive hypo-d-oxide supports , 2007 .

[8]  R. Černý,et al.  Synthesis and characterization of hollandite-type material intended for the specific containment of radioactive cesium , 2006 .

[9]  E. Slavcheva,et al.  Electrocatalytic activity of Pt and PtCo deposited on Ebonex by BH reduction , 2005 .

[10]  M. Batzill,et al.  Fundamental studies of titanium oxide-Pt(100) interfaces: I. stable high temperature structures formed by annealing TiOx films on Pt(100) , 2004 .

[11]  John Hill,et al.  The performance of Ebonex® electrodes in bipolar lead-acid batteries , 2004 .

[12]  Guoying Chen,et al.  DEVELOPMENT OF SUPPORTED BIFUNCTIONAL ELECTROCATALYSTS FOR UNITIZED REGENERATIVE FUEL CELLS , 2002 .

[13]  Christopher S. Johnson,et al.  Lithium insertion into hollandite-type TiO2 , 1999 .

[14]  R. L. Clarke,et al.  Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex® materials , 1998 .

[15]  S. Langer,et al.  Comparisons of Ebonex® and graphite supports for platinum and nickel electrocatalysts , 1998 .

[16]  D. Bessarabov,et al.  Sol-gel film-preparation of novel electrodes for the electrocatalytic oxidation of organic pollutants in water , 1998 .

[17]  W. Kao,et al.  Formation Enhancement of a Lead/Acid Battery Positive Plate by Barium Metaplumbate and Ebonex® , 1997 .

[18]  T. Madey,et al.  Thermal stability of Pt films on TiO2(110): evidence for encapsulation , 1995 .

[19]  S. Mho,et al.  Characteristics of Pt thin films on the conducting ceramics TiO and Ebonex (Ti4O7) as electrode materials , 1995 .

[20]  F. Danilov,et al.  Electrocatalytic activity of anodes in reference to Cr(III) oxidation reaction , 1993 .

[21]  R. Marchand,et al.  New hollandite oxides: TiO2(H) and K0.06TiO2 , 1989 .

[22]  S. Tauster Strong metal-support interactions , 1986 .

[23]  P. Strobel,et al.  Structural chemistry of the Magnéli phases TinO2n−1, 4 ≤ n ≤ 9: II. Refinements and structural discussion , 1982 .

[24]  M. Marezio,et al.  Phase transitions in Ti 5 O 9 single crystals: Electrical conductivity, magnetic susceptibility, specific heat, electron paramagnetic resonance, and structural aspects , 1977 .

[25]  Dong-Hwang Chen,et al.  Preparation and electrocatalytic activity of Pt/Ti nanostructured electrodes , 2001 .

[26]  R. Arnold,et al.  Electrolytic oxidation of trichloroethylene using a ceramic anode , 1999 .

[27]  D. Pletcher,et al.  The electrodeposition of platinum onto a conducting ceramic, Ebonex® , 1997 .

[28]  D. Pletcher,et al.  Studies of platinized Ebonex® electrodes , 1997 .