WT 1 mutations in TALL

Valeria Tosello,1 Marc R. Mansour,2 Kelly Barnes,1 Maddalena Paganin,3 Maria Luisa Sulis,1,4 Sarah Jenkinson,2 Christopher G. Allen,2 Rosemary E. Gale,2 David C. Linch,2 Teresa Palomero,1,5 Pedro Real,1,6 Vundavalli Murty,1 Xiaopan Yao,7 Susan M. Richards,8 Anthony Goldstone,9 Jacob Rowe,10 Giuseppe Basso,3 Peter H. Wiernik,11,12 Elisabeth Paietta,11,12 Rob Pieters,13,14 Martin Horstmann,15,16 Jules P. P. Meijerink,13 and Adolfo A. Ferrando1,4,5

[1]  T. A. Lister,et al.  Mutation of the Wilms' tumor 1 gene is a poor prognostic factor associated with chemotherapy resistance in normal karyotype acute myeloid leukemia: the United Kingdom Medical Research Council Adult Leukaemia Working Party. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  James R. Downing,et al.  Genomic Analysis of the Clonal Origins of Relapsed Acute Lymphoblastic Leukemia , 2008, Science.

[3]  M. Caligiuri,et al.  Wilms' tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[4]  A. Ferrando,et al.  NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. , 2008, Blood.

[5]  T. Lister,et al.  Microdeletions are a general feature of adult and adolescent acute lymphoblastic leukemia: Unexpected similarities with pediatric disease , 2008, Proceedings of the National Academy of Sciences.

[6]  E. Raetz,et al.  Molecular pathogenesis of T-cell leukaemia and lymphoma , 2008, Nature Reviews Immunology.

[7]  J. Meijerink,et al.  Cooperative genetic defects in TLX3 rearranged pediatric T-ALL , 2008, Leukemia.

[8]  Leslie L Robison,et al.  Acute lymphoblastic leukaemia , 2018, Radiopaedia.org.

[9]  B. Clurman,et al.  FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation , 2008, Nature Reviews Cancer.

[10]  Charles Lee,et al.  Alu elements mediate MYB gene tandem duplication in human T-ALL , 2007, The Journal of experimental medicine.

[11]  L. Foroni,et al.  Notch-1 Mutations Are Secondary Events in Some Patients with T-Cell Acute Lymphoblastic Leukemia , 2007, Clinical Cancer Research.

[12]  Andrew P. Stubbs,et al.  The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. , 2007, Blood.

[13]  A. Look,et al.  Mechanisms of transcription factor deregulation in lymphoid cell transformation , 2007, Oncogene.

[14]  S. Reed,et al.  FBXW7/hCDC4 is a general tumor suppressor in human cancer. , 2007, Cancer research.

[15]  B. Nadel,et al.  The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. , 2007, Blood.

[16]  Rob Pieters,et al.  FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors , 2007, The Journal of experimental medicine.

[17]  A. Ferrando,et al.  The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia , 2007, The Journal of experimental medicine.

[18]  Rob Pieters,et al.  Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia , 2007, Nature Genetics.

[19]  J. Hehir-Kwa,et al.  High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression , 2007, Leukemia.

[20]  Christopher B. Miller,et al.  Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia , 2007, Nature.

[21]  T. Lister,et al.  Wilms' tumour 1 mutations are associated with FLT3-ITD and failure of standard induction chemotherapy in patients with normal karyotype AML , 2007, Leukemia.

[22]  A. Ferrando,et al.  CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to γ-secretase inhibitors , 2006, Leukemia.

[23]  K. Wenner,et al.  Serum asparaginase activities and asparagine concentrations in the cerebrospinal fluid after a single infusion of 2,500 IU/m2 PEG asparaginase in children with ALL treated according to protocol COALL‐06‐97 , 2006, Pediatric blood & cancer.

[24]  F. Sigaux,et al.  HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). , 2005, Blood.

[25]  Andrew P. Weng,et al.  Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia , 2004, Science.

[26]  A. Ferrando,et al.  Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia , 2004, Nature Genetics.

[27]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[28]  S. Hunger,et al.  Analysis of TP53 Mutations in Relapsed Childhood Acute Lymphoblastic Leukemia , 2001, Journal of pediatric hematology/oncology.

[29]  R. Heilig,et al.  A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia , 2001, Leukemia.

[30]  Cheng Li,et al.  Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application , 2001, Genome Biology.

[31]  A. Ferrando,et al.  Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. , 2000, Seminars in hematology.

[32]  A. Schedl,et al.  The Wilms' tumor suppressor WT1: approaches to gene function. , 1998, Kidney international.

[33]  K. Pritchard-Jones,et al.  Wilms' tumor (WT1) gene mutations occur mainly in acute myeloid leukemia and may confer drug resistance. , 1998, Blood.

[34]  P. Laird,et al.  COBRA: a sensitive and quantitative DNA methylation assay. , 1997, Nucleic acids research.

[35]  J. Goldman,et al.  Dominant‐negative mutations of the Wilms' tumour predisposing gene (WT1) are infrequent in CML blast crisis and de novo acute leukaemia , 1997, European journal of haematology.

[36]  K. Pritchard-Jones,et al.  Mutations in the Wilms' tumor gene WT1 in leukemias. , 1996, Blood.

[37]  W. Bickmore,et al.  DNA binding capacity of the WT1 protein is abolished by Denys-Drash syndrome WT1 point mutations. , 1995, Human molecular genetics.

[38]  M. Hsiao,et al.  Nonhereditary p53 mutations in T-cell acute lymphoblastic leukemia are associated with the relapse phase. , 1994, Blood.

[39]  A. Kelsey,et al.  Evidence that WT1 mutations in Denys-Drash syndrome patients may act in a dominant-negative fashion. , 1993, Human molecular genetics.

[40]  Y. Akasaka,et al.  A point mutation found in the WT1 gene in a sporadic Wilms' tumor without genitourinary abnormalities is identical with the most frequent point mutation in Denys‐Drash syndrome , 1993, FEBS letters.

[41]  P. Sharp,et al.  A dominant mutation in the Wilms tumor gene WT1 cooperates with the viral oncogene E1A in transformation of primary kidney cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Sklar,et al.  TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms , 1991, Cell.

[43]  D. Housman,et al.  An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumor , 1990, Cell.

[44]  C. Junien,et al.  CpG islands surround a DNA segment located between translocation breakpoints associated with genitourinary dysplasia and aniridia. , 1989, Genomics.

[45]  M. Gubler,et al.  The nephropathy associated with male pseudohermaphroditism and Wilms' tumor (Drash syndrome): a distinctive glomerular lesion--report of 10 cases. , 1985, Clinical nephrology.

[46]  J. Meijerink,et al.  Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences , 2008, Leukemia.

[47]  W. Kamps,et al.  The outcome of molecular-cytogenetic subgroups in pediatric T-cell acute lymphoblastic leukemia: a retrospective study of patients treated according to DCOG or COALL protocols. , 2006, Haematologica.

[48]  Ching-Hon Pui,et al.  Acute lymphoblastic leukemia. , 2004, The New England journal of medicine.

[49]  M. Little,et al.  A clinical overview of WT1 gene mutations , 1997, Human mutation.