Interfacial Charge Transport in 1D TiO2 Based Photoelectrodes for Photoelectrochemical Water Splitting.

1D nanostructured photoelectrodes are promising for application as photoelectrochemical (PEC) devices for solar energy conversion into hydrogen (H2 ) owing to the optical, structural, and electronic advantages. Titanium dioxide (TiO2 ) is the most investigated candidate as a photoelectrode due to its good photostability, low production cost, and eco-friendliness. The obstacle for TiO2 's practical application is the inherent wide bandgap (UV-lights response), poor conductivity, and limited hole diffusion length. Here, a comprehensive review of the current research efforts toward the development of 1D TiO2 based photoelectrodes for heterogeneous PEC water splitting is provided along with a discussion of nanoarchitectures and energy band engineering influences on interfacial charge transfer and separation of 1D TiO2 composited with different dimensional photoactive materials. The key focus of this review is to understand the charge transfer processes at interfaces and the relationship between photogenerated charge separation and photoelectrochemical performance. It is anticipated that this review will afford enriched information on the rational designs of nanoarchitectures, doping, and heterojunction interfaces for 1D TiO2 based photoelectrodes to achieve highly efficient solar energy conversion.

[1]  E. Spohr,et al.  Photooxidation of Water on Pristine, S- and N-Doped TiO2(001) Nanotube Surfaces: A DFT + U Study , 2019, The Journal of Physical Chemistry C.

[2]  Yueping Fang,et al.  CdS branched TiO2: Rods-on-rods nanoarrays for efficient photoelectrochemical (PEC) and self-bias photocatalytic (PC) hydrogen production , 2019, Journal of Power Sources.

[3]  B. Wei,et al.  Plasmonic TiN boosting nitrogen-doped TiO2 for ultrahigh efficient photoelectrochemical oxygen evolution , 2019, Applied Catalysis B: Environmental.

[4]  Ho Won Jang,et al.  Tailoring of Interfacial Band Offsets by an Atomically Thin Polar Insulating Layer To Enhance the Water-Splitting Performance of Oxide Heterojunction Photoanodes. , 2019, Nano letters.

[5]  D. Nandan,et al.  RETRACTED: Significant enhancement of photoactivity in one-dimensional TiO2 nanorods modified by S-, N-, O-doped carbon nanosheets , 2019, Catalysis Today.

[6]  F. Gao,et al.  Hydrogenated TiO2 Nanorod Arrays Decorated with Carbon Quantum Dots toward Efficient Photoelectrochemical Water Splitting. , 2019, ACS applied materials & interfaces.

[7]  Ho Won Jang,et al.  NH2-MIL-125(Ti)/TiO2 nanorod heterojunction photoanodes for efficient photoelectrochemical water splitting , 2019, Applied Catalysis B: Environmental.

[8]  Shougang Chen,et al.  Controllable TiO2 core-shell phase heterojunction for efficient photoelectrochemical water splitting under solar light , 2019, Applied Catalysis B: Environmental.

[9]  Yanli Zhao,et al.  Synergistically enhanced charge separation in BiFeO3/Sn:TiO2 nanorod photoanode via bulk and surface dual modifications , 2019, Nano Energy.

[10]  Chaodi Xu,et al.  Amorphous Ta2OxNy-enwrapped TiO2 rutile nanorods for enhanced solar photoelectrochemical water splitting , 2019, Applied Catalysis B: Environmental.

[11]  Xiaobo Chen,et al.  SnS2 Nanosheets/H-TiO2 Nanotube Arrays as a Type II Heterojunctioned Photoanode for Photoelectrochemical Water Splitting. , 2019, ChemSusChem.

[12]  Liang Li,et al.  New Insights into the Electron-Collection Efficiency Improvement of CdS-Sensitized TiO2 Nanorod Photoelectrodes by Interfacial Seed-Layer Mediation. , 2019, ACS applied materials & interfaces.

[13]  D. Leung,et al.  TiO2 nanotube arrays modified with nanoparticles of platinum group metals (Pt, Pd, Ru): enhancement on photoelectrochemical performance , 2019, Journal of Nanoparticle Research.

[14]  Xiujian Zhao,et al.  Charge carrier interfacial transfer pathways from TiO2 and Au/TiO2 nanorod arrays to electrolyte and the association with photocatalysis , 2019, Applied Surface Science.

[15]  Jinghua Yu,et al.  A Photoresponsive Rutile TiO2 Heterojunction with Enhanced Electron–Hole Separation for High‐Performance Hydrogen Evolution , 2019, Advanced materials.

[16]  N. Wu,et al.  Metal–organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode for solar water-splitting , 2018, Nano Research.

[17]  Shaobin Wang,et al.  Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting , 2018, Applied Catalysis B: Environmental.

[18]  Ho Won Jang,et al.  One-pot synthesis of sulfur and nitrogen codoped titanium dioxide nanorod arrays for superior photoelectrochemical water oxidation , 2018, Applied Catalysis B: Environmental.

[19]  Wenxi Guo,et al.  Light-Driven Sustainable Hydrogen Production Utilizing TiO2 Nanostructures: A Review , 2018, Small Methods.

[20]  Chih-Chieh Wang,et al.  Deposition of Ni nanoparticles on black TiO2 nanowire arrays for photoelectrochemical water splitting by atomic layer deposition , 2018, Electrochimica Acta.

[21]  Z. Li,et al.  Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays , 2018, Nano Energy.

[22]  H. Jung,et al.  Facile and controllable surface-functionalization of TiO2 nanotubes array for highly-efficient photoelectrochemical water-oxidation , 2018, Journal of Catalysis.

[23]  Qiang Xu,et al.  Metal–Organic Frameworks as Platforms for Catalytic Applications , 2018, Advanced materials.

[24]  N. M. Mohamed,et al.  Mutual effect of extrinsic defects and electronic carbon traps of M-TiO2 (M = V, Co, Ni) nanorod arrays on photoexcited charge extraction of CdS for superior photoelectrochemical activity of hydrogen production , 2018 .

[25]  Wei Zhao,et al.  Highly Conductive Cable‐Like Bicomponent Titania Photoanode Approaching Limitation of Electron and Hole Collection , 2018, Advanced Functional Materials.

[26]  Qingliang Liao,et al.  Ferroelectric polarization-enhanced charge separation in a vanadium-doped ZnO photoelectrochemical system , 2018 .

[27]  Hao Yu,et al.  Novel Highly Active Anatase/Rutile TiO2 Photocatalyst with Hydrogenated Heterophase Interface Structures for Photoelectrochemical Water Splitting into Hydrogen , 2018, ACS Sustainable Chemistry & Engineering.

[28]  Jiaxing Li,et al.  Strongly Coupled g-C3 N4 Nanosheets-Co3 O4 Quantum Dots as 2D/0D Heterostructure Composite for Peroxymonosulfate Activation. , 2018, Small.

[29]  Gongming Wang,et al.  The “Midas Touch” Transformation of TiO2 Nanowire Arrays during Visible Light Photoelectrochemical Performance by Carbon/Nitrogen Coimplantation , 2018 .

[30]  K. Maeda,et al.  Water Splitting on Rutile TiO2 -Based Photocatalysts. , 2018, Chemistry.

[31]  Ke-Qin Zhang,et al.  MoS2 Quantum Dots@TiO2 Nanotube Arrays: An Extended-Spectrum-Driven Photocatalyst for Solar Hydrogen Evolution. , 2018, ChemSusChem.

[32]  S. Rohani,et al.  Efficient light harvesting by NiS/CdS/ZnS NPs incorporated in C, N-co-doped-TiO2 nanotube arrays as visible-light sensitive multilayer photoanode for solar applications , 2018 .

[33]  Zhilin Yang,et al.  Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO2 Photoelectrodes. , 2018, Angewandte Chemie.

[34]  G. Centi,et al.  Role of CuO in the modification of the photocatalytic water splitting behavior of TiO2 nanotube thin films , 2018 .

[35]  K. Domen,et al.  Stable Hydrogen Production from Water on an NIR‐Responsive Photocathode under Harsh Conditions , 2018 .

[36]  V. Subramanian,et al.  One-Pot Fabrication of High Coverage PbS Quantum Dot Nanocrystal-Sensitized Titania Nanotubes for Photoelectrochemical Processes , 2018 .

[37]  Jih-Sheng Yang,et al.  Toward Eco-Friendly and Highly Efficient Solar Water Splitting Using In2S3/Anatase/Rutile TiO2 Dual-Staggered-Heterojunction Nanodendrite Array Photoanode. , 2018, ACS applied materials & interfaces.

[38]  Jie Li,et al.  Heterostructured TiO2 nanotree arrays with silver quantum dots loading for enhanced photoelectrochemical properties , 2018 .

[39]  Liben Li,et al.  Synthesis of TiO2@g-C3N4 core-shell nanorod arrays with Z-scheme enhanced photocatalytic activity under visible light. , 2017, Journal of colloid and interface science.

[40]  Chao Gao,et al.  Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life , 2017, Science Advances.

[41]  Tianyou Zhai,et al.  Decorating Perovskite Quantum Dots in TiO2 Nanotubes Array for Broadband Response Photodetector , 2017 .

[42]  Jinhua Ye,et al.  Three-Dimensional Lupinus-like TiO2 Nanorod@Sn3O4 Nanosheet Hierarchical Heterostructured Arrays as Photoanode for Enhanced Photoelectrochemical Performance. , 2017, ACS applied materials & interfaces.

[43]  Longwei Yin,et al.  Metal–Organic Framework Derived Co3O4/TiO2/Si Heterostructured Nanorod Array Photoanodes for Efficient Photoelectrochemical Water Oxidation , 2017 .

[44]  F. Peng,et al.  Design of two kinds of branched TiO2 nano array photoanodes and their comparison of photoelectrochemical performances , 2017 .

[45]  Qinglong Liu,et al.  Synergistic Effect of Si Doping and Heat Treatments Enhances the Photoelectrochemical Water Oxidation Performance of TiO2 Nanorod Arrays , 2017 .

[46]  A. Kildishev,et al.  Broadband Hot‐Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride , 2017 .

[47]  Tao Zhang,et al.  Photoelectrochemical devices for solar water splitting - materials and challenges. , 2017, Chemical Society reviews.

[48]  Xiaodong Zhuang,et al.  Recent Advances in Earth‐Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting , 2017 .

[49]  Yanli Zhao,et al.  Ordered Single-Crystalline Anatase TiO2 Nanorod Clusters Planted on Graphene for Fast Charge Transfer in Photoelectrochemical Solar Cells. , 2017, Small.

[50]  Linjun Wang,et al.  Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO2–SrTiO3 Core–Shell Nanowire Photoelectrochemical System , 2017, Advanced materials.

[51]  Bin Wang,et al.  Photoelectrochemical hydrogen production at peak efficiency over 10% via PbSe QDs/TiO2 nanotube array photoanodes , 2017 .

[52]  Desmond E. Schipper,et al.  A TiO2/FeMnP Core/Shell Nanorod Array Photoanode for Efficient Photoelectrochemical Oxygen Evolution. , 2017, ACS nano.

[53]  P. Poddar,et al.  Physical Mechanism Behind Enhanced Photoelectrochemical and Photocatalytic Properties of Superhydrophilic Assemblies of 3D-TiO2 Microspheres with Arrays of Oriented, Single-Crystalline TiO2 Nanowires as Building Blocks Deposited on Fluorine-Doped Tin Oxide. , 2017, ACS applied materials & interfaces.

[54]  Weijian Chen,et al.  Cobalt-Nickel Layered Double Hydroxides Modified on TiO2 Nanotube Arrays for Highly Efficient and Stable PEC Water Splitting. , 2017, Small.

[55]  Siyuan Liu,et al.  Nano-Photoelectrochemical Cell Arrays with Spatially Isolated Oxidation and Reduction Channels. , 2017, ACS nano.

[56]  X. Li,et al.  Design and preparation of CdS/H-3D-TiO2/Pt-wire photocatalysis system with enhanced visible-light driven H2 evolution , 2017 .

[57]  Mark D. Symes,et al.  Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting , 2017 .

[58]  A. Fujishima,et al.  α-Fe2O3/TiO2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting. , 2017, Nanoscale.

[59]  Zhiliang Wang,et al.  Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces , 2017 .

[60]  H. Gong,et al.  Preparation of the TiO2/Graphic Carbon Nitride Core-Shell Array as a Photoanode for Efficient Photoelectrochemical Water Splitting. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[61]  J. Nowotny,et al.  Photocatalytic properties of TiO2: Effect of niobium and oxygen activity on partial water oxidation , 2016 .

[62]  Hao Yu,et al.  Branched hydrogenated TiO2 nanorod arrays for improving photocatalytic hydrogen evolution performance under simulated solar light , 2016 .

[63]  P. Schmuki,et al.  A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting. , 2016, ChemSusChem.

[64]  David G. Evans,et al.  TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting , 2016 .

[65]  Jian-qing Zhang,et al.  Photochemical synthesis of SnO2/TiO2 composite nanotube arrays with enhanced lithium storage performance , 2016 .

[66]  B. Dutta,et al.  Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst , 2016 .

[67]  A. Hirata,et al.  Versatile nanoporous bimetallic phosphides towards electrochemical water splitting , 2016 .

[68]  I. Sharp,et al.  Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1. , 2016, Nature materials.

[69]  Xi‐Wen Du,et al.  ZnFe2 O4 Leaves Grown on TiO2 Trees Enhance Photoelectrochemical Water Splitting. , 2016, Small.

[70]  Bowen Zhu,et al.  Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance. , 2016, Nanoscale.

[71]  Siang-Piao Chai,et al.  Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? , 2016, Chemical reviews.

[72]  Anjli M. Patel,et al.  Enhanced photoelectrochemical water splitting via SILAR-deposited Ti-doped hematite thin films with an FeOOH overlayer , 2016 .

[73]  Zhengu Chen,et al.  Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting , 2016 .

[74]  Sung-Fu Hung,et al.  Iridium Oxide‐Assisted Plasmon‐Induced Hot Carriers: Improvement on Kinetics and Thermodynamics of Hot Carriers , 2016 .

[75]  Bin Zhang,et al.  Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. , 2016, Chemical Society reviews.

[76]  Haijiao Zhang,et al.  A room temperature approach for the fabrication of aligned TiO₂ nanotube arrays on transparent conductive substrates. , 2016, Chemical communications.

[77]  Chang Ming Li,et al.  Polymer-Mediated Self-Assembly of TiO2@Cu2O Core-Shell Nanowire Array for Highly Efficient Photoelectrochemical Water Oxidation. , 2016, ACS applied materials & interfaces.

[78]  L. Qi,et al.  Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting. , 2016, Small.

[79]  Zhigao Hu,et al.  Enhanced Photoelectrochemical Activity of ZnO-Coated TiO2 Nanotubes and Its Dependence on ZnO Coating Thickness , 2016, Nanoscale Research Letters.

[80]  Shihe Yang,et al.  Hierarchical nanostructures of metal oxides for enhancing charge separation and transport in photoelectrochemical solar energy conversion systems. , 2016, Nanoscale horizons.

[81]  W. Mai,et al.  Rational design of anatase TiO2 architecture with hierarchical nanotubes and hollow microspheres for high-performance dye-sensitized solar cells , 2016 .

[82]  J. Demšar,et al.  Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications , 2016, Nature Communications.

[83]  N. Lewis,et al.  The frontiers of energy , 2016, Nature Energy.

[84]  Chuanwei Cheng,et al.  Three-Dimensional CdS-Sensitized Sea Urchin Like TiO2-Ordered Arrays as Efficient Photoelectrochemical Anodes , 2015 .

[85]  Xudong Wang,et al.  Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2-BaTiO3 Core-Shell Nanowire Photoanodes. , 2015, Nano letters.

[86]  Xinyong Li,et al.  Novel phosphorus doped carbon nitride modified TiO₂ nanotube arrays with improved photoelectrochemical performance. , 2015, Nanoscale.

[87]  J. Zhong,et al.  Solar Water Splitting by TiO2/CdS/Co–Pi Nanowire Array Photoanode Enhanced with Co–Pi as Hole Transfer Relay and CdS as Light Absorber , 2015 .

[88]  Ashutosh K. Singh,et al.  Three-Dimensional Nanoarchitecture of BiFeO3 Anchored TiO2 Nanotube Arrays for Electrochemical Energy Storage and Solar Energy Conversion , 2015 .

[89]  Kaiqiang Liu,et al.  Efficient and Stable Photoelectrochemical Seawater Splitting with TiO2@g-C3N4 Nanorod Arrays Decorated by Co-Pi , 2015 .

[90]  Longwei Yin,et al.  Enhanced photovoltaic performance of dye-sensitized solar cells based on Sr-doped TiO2/SrTiO3 nanorod array heterostructures , 2015 .

[91]  Qiang Zhang,et al.  Spatially Confined Hybridization of Nanometer‐Sized NiFe Hydroxides into Nitrogen‐Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity , 2015, Advanced materials.

[92]  S. Piskunov,et al.  C-, N-, S-, and Fe-Doped TiO2 and SrTiO3 Nanotubes for Visible-Light-Driven Photocatalytic Water Splitting: Prediction from First Principles , 2015 .

[93]  Yu Huang,et al.  Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO₂ Nanowire Arrays by Nitrogen Implantation. , 2015, Nano letters.

[94]  B. Liu,et al.  One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis. , 2015, Small.

[95]  Feng Zhou,et al.  Molybdenum-doped and anatase/rutile mixed-phase TiO2 nanotube photoelectrode for high photoelectrochemical performance , 2015 .

[96]  D. Shen,et al.  Towards efficient photoinduced charge separation in carbon nanodots and TiO2 composites in the visible region. , 2015, Physical chemistry chemical physics : PCCP.

[97]  Zhengxiao Guo,et al.  Visible-light driven heterojunction photocatalysts for water splitting – a critical review , 2015 .

[98]  Satyajit Gupta,et al.  Nature-Inspired Tree-Like TiO2 Architecture: A 3D Platform for the Assembly of CdS and Reduced Graphene Oxide for Photoelectrochemical Processes , 2015 .

[99]  Jiangtian Li,et al.  Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review , 2015 .

[100]  D. Kuang,et al.  Three-dimensional TiO2/ZnO hybrid array as a heterostructured anode for efficient quantum-dot-sensitized solar cells. , 2015, ACS applied materials & interfaces.

[101]  Yuegang Zhang,et al.  Synthesis of three-dimensional hyperbranched TiO2 nanowire arrays with significantly enhanced photoelectrochemical hydrogen production , 2015 .

[102]  Bin Liu,et al.  Metal-cluster-decorated TiO2 nanotube arrays: a composite heterostructure toward versatile photocatalytic and photoelectrochemical applications. , 2015, Small.

[103]  B. Shan,et al.  Co3O4-modified TiO2 nanotube arrays via atomic layer deposition for improved visible-light photoelectrochemical performance. , 2015, ACS applied materials & interfaces.

[104]  Yueping Fang,et al.  Non-noble metal copper nanoparticles-decorated TiO2 nanotube arrays with plasmon-enhanced photocatalytic hydrogen evolution under visible light , 2015 .

[105]  K. Domen,et al.  Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. , 2014, Chemical Society reviews.

[106]  Hongbin Cao,et al.  Surface-phase junctions of branched TiO2 nanorod arrays for efficient photoelectrochemical water splitting , 2014 .

[107]  Jun Guo,et al.  2D ZnIn(2)S(4) nanosheet/1D TiO(2) nanorod heterostructure arrays for improved photoelectrochemical water splitting. , 2014, ACS applied materials & interfaces.

[108]  T. Xie,et al.  Highly Efficient CdS/WO3 Photocatalysts: Z-Scheme Photocatalytic Mechanism for Their Enhanced Photocatalytic H2 Evolution under Visible Light , 2014 .

[109]  H. Tüysüz,et al.  Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges , 2014 .

[110]  Porun Liu,et al.  Fluorine-doped porous single-crystal rutile TiO2 nanorods for enhancing photoelectrochemical water splitting. , 2014, Chemistry.

[111]  P. Poddar,et al.  Template-Free Fabrication of Highly-Oriented Single-Crystalline 1D-Rutile TiO2-MWCNT Composite for Enhanced Photoelectrochemical Activity , 2014 .

[112]  Xiaobo Chen,et al.  Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.

[113]  Bo Wang,et al.  Dendritic TiO2 /ln2 S3 /AgInS2 trilaminar core-shell branched nanoarrays and the enhanced activity for photoelectrochemical water splitting. , 2014, Small.

[114]  Zhifeng Liu,et al.  Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance , 2014 .

[115]  A. Manivannan,et al.  Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. , 2014, Journal of the American Chemical Society.

[116]  Jun Hee Lee,et al.  TiO2/ferroelectric heterostructures as dynamic polarization-promoted catalysts for photochemical and electrochemical oxidation of water. , 2014, Physical review letters.

[117]  Daniel G Nocera,et al.  A functionally stable manganese oxide oxygen evolution catalyst in acid. , 2014, Journal of the American Chemical Society.

[118]  Weina Ren,et al.  3D TiO2/SnO2 hierarchically branched nanowires on transparent FTO substrate as photoanode for efficient water splitting , 2014 .

[119]  Xudong Wang,et al.  Evolution of hollow TiO2 nanostructures via the Kirkendall effect driven by cation exchange with enhanced photoelectrochemical performance. , 2014, Nano letters.

[120]  Shihe Yang,et al.  Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting , 2014 .

[121]  Liejin Guo,et al.  Co3O4 quantum dots: reverse micelle synthesis and visible-light-driven photocatalytic overall water splitting. , 2014, Chemical communications.

[122]  Xinyong Li,et al.  BiFeO3/TiO2 nanotube arrays composite electrode: construction, characterization, and enhanced photoelectrochemical properties. , 2014, ACS applied materials & interfaces.

[123]  Xiaogang Yang,et al.  Hematite-based water splitting with low turn-on voltages. , 2013, Angewandte Chemie.

[124]  W. Schuhmann,et al.  Combination of A Photosystem 1-Based Photocathode and a Photosystem 2-Based Photoanode to a Z-Scheme Mimic for Biophotovoltaic Applications** , 2013, Angewandte Chemie.

[125]  Ming Xu,et al.  Photoelectrochemical detection of glutathione by IrO2-hemin-TiO2 nanowire arrays. , 2013, Nano letters.

[126]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[127]  S. Bi,et al.  Spherical TiO2 aggregates with different building units for dye-sensitized solar cells. , 2013, Nanoscale.

[128]  Y. Tong,et al.  Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. , 2013, Nano letters.

[129]  Minglong Zhang,et al.  Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook , 2013 .

[130]  K. Sun,et al.  Branched TiO2/Si nanostructures for enhanced photoelectrochemical water splitting , 2013 .

[131]  Stephen B. Cronin,et al.  A Review of Surface Plasmon Resonance‐Enhanced Photocatalysis , 2013 .

[132]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[133]  Ping Zhao,et al.  Piezoelectric‐Polarization‐Enhanced Photovoltaic Performance in Depleted‐Heterojunction Quantum‐Dot Solar Cells , 2013, Advanced materials.

[134]  Ib Chorkendorff,et al.  Using TiO2 as a conductive protective layer for photocathodic H2 evolution. , 2013, Journal of the American Chemical Society.

[135]  G. Jabbour,et al.  Optical and photocatalytic properties of two-dimensional MoS2 , 2012, The European Physical Journal B.

[136]  Robert Kostecki,et al.  Nanomaterials for renewable energy production and storage. , 2012, Chemical Society reviews.

[137]  L. You,et al.  Mechanism of polarization fatigue in BiFeO3. , 2012, ACS nano.

[138]  G. Stucky,et al.  Plasmonic photoanodes for solar water splitting with visible light. , 2012, Nano letters.

[139]  J. Barber,et al.  Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts. , 2012, Physical chemistry chemical physics : PCCP.

[140]  J. Yates,et al.  Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. , 2012, Chemical reviews.

[141]  A. Rogach,et al.  Heterojunction Engineering of CdTe and CdSe Quantum Dots on TiO2 Nanotube Arrays: Intricate Effects of Size‐Dependency and Interfacial Contact on Photoconversion Efficiencies , 2012 .

[142]  Fang‐Xing Xiao An efficient layer-by-layer self-assembly of metal-TiO2 nanoring/nanotube heterostructures, M/T-NRNT (M = Au, Ag, Pt), for versatile catalytic applications. , 2012, Chemical communications.

[143]  Chandima Gomes,et al.  Hydrogen as an energy carrier: Prospects and challenges , 2012 .

[144]  Yun Jeong Hwang,et al.  Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. , 2012, ACS nano.

[145]  W. Choi,et al.  Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components , 2012 .

[146]  Dermot O'Hare,et al.  Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. , 2012, Chemical reviews.

[147]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[148]  Xiaolin Zheng,et al.  Branched TiO₂ nanorods for photoelectrochemical hydrogen production. , 2011, Nano letters.

[149]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[150]  Jinhua Ye,et al.  Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. , 2011, ACS nano.

[151]  M. Moskovits Hot Electrons Cross Boundaries , 2011, Science.

[152]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[153]  C. Grimes,et al.  Fabrication of PbS nanoparticle-sensitized TiO₂ nanotube arrays and their photoelectrochemical properties. , 2011, ACS applied materials & interfaces.

[154]  Han Yang,et al.  Hybridized Nanowires and Cubes: A Novel Architecture of a Heterojunctioned TiO2/SrTiO3 Thin Film for Efficient Water Splitting , 2010 .

[155]  B. Parkinson,et al.  Multiple Exciton Collection in a Sensitized Photovoltaic System , 2010, Science.

[156]  N. Lior Sustainable energy development: The present (2009) situation and possible paths to the future , 2010 .

[157]  Hua Wang,et al.  CdS Quantum Dots-Sensitized TiO2 Nanorod Array on Transparent Conductive Glass Photoelectrodes , 2010 .

[158]  Xie Quan,et al.  Electrochemical Method for Synthesis of a ZnFe2O4/TiO2 Composite Nanotube Array Modified Electrode with Enhanced Photoelectrochemical Activity , 2010 .

[159]  P. Kamat,et al.  Solar Cells by Design: Photoelectrochemistry of TiO2 Nanorod Arrays Decorated with CdSe , 2010 .

[160]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[161]  Hong Zhu,et al.  Preparation and Photoelectrochemical Activity of Cr-Doped TiO2 Nanorods with Nanocavities , 2010 .

[162]  Jun Zhang,et al.  Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. , 2010, ACS nano.

[163]  Song Jin,et al.  Potential applications of hierarchical branching nanowires in solar energy conversion , 2009 .

[164]  Ying Dai,et al.  Energetic and electronic properties of X- (Si, Ge, Sn, Pb) doped TiO2 from first-principles. , 2009, Physical chemistry chemical physics : PCCP.

[165]  A. Manivannan,et al.  Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. , 2009, Journal of the American Chemical Society.

[166]  Zhiyong Fan,et al.  Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.

[167]  Guohua Chen,et al.  Photoelectrocatalytic materials for environmental applications , 2009 .

[168]  James P. Lewis,et al.  Visible light photocatalytic activity in nitrogen-doped TiO2 nanobelts , 2009 .

[169]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[170]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[171]  R. Jin,et al.  Conversion of Anionic [Au25(SCH2CH2Ph)18]− Cluster to Charge Neutral Cluster via Air Oxidation , 2008 .

[172]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[173]  Guohua Chen,et al.  Fabrication of Boron-Doped TiO2 Nanotube Array Electrode and Investigation of Its Photoelectrochemical Capability , 2007 .

[174]  V. K. Mahajan,et al.  Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode , 2007 .

[175]  Dong Young Kim,et al.  Enhanced charge-discharge characteristics of RuO2 supercapacitors on heat-treated TiO2 nanorods , 2007 .

[176]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[177]  Patrik Schmuki,et al.  Self-organized TiO2 nanotube layers as highly efficient photocatalysts. , 2007, Small.

[178]  A. Taleb,et al.  Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and x-ray absorption spectroscopy , 2007 .

[179]  I. E. Grey,et al.  Efficiency of solar water splitting using semiconductor electrodes , 2006 .

[180]  M. Jefferson Sustainable energy development: performance and prospects , 2006 .

[181]  S. Yoshikawa,et al.  Photocatalytic evolution of hydrogen over mesoporous TiO2 supported NiO photocatalyst prepared by single-step sol–gel process with surfactant template , 2005 .

[182]  Tetsu Tatsuma,et al.  Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. , 2005, Journal of the American Chemical Society.

[183]  Julius M. Mwabora,et al.  Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering , 2003 .

[184]  Akio Ishikawa,et al.  Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5 by UPS and Electrochemical Methods , 2003 .

[185]  A. Hagfeldt,et al.  Aqueous photoelectrochemistry of hematite nanorod array , 2002 .

[186]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[187]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[188]  James R. Bolton,et al.  Limiting and realizable efficiencies of solar photolysis of water , 1985, Nature.

[189]  P. Salvador,et al.  Hole diffusion length in n‐TiO2 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis , 1984 .

[190]  A. Fujishima,et al.  Experimental evidence for the hydrogen evolution site in photocatalytic process on Pt/TiO2 , 1983 .

[191]  K. Domen,et al.  Photocatalytic decomposition of liquid water on a NiOSrTiO3 catalyst , 1982 .

[192]  J. Reichman Collection efficiency of low‐mobility solar cells , 1981 .

[193]  S. Trasatti Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions , 1972 .

[194]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[195]  B. Liu,et al.  Surface Rutilization of Anatase TiO2 Nanorods for Creation of Synergistically Bridging and Fencing Electron Highways , 2016 .

[196]  Hexing Li,et al.  Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis , 2016 .

[197]  Y. Lei,et al.  Constructing a AZO/TiO2 Core/Shell Nanocone Array with Uniformly Dispersed Au NPs for Enhancing Photoelectrochemical Water Splitting , 2016 .

[198]  W. Choi,et al.  N-doped TiO2 nanotubes coated with a thin TaOxNy layer for photoelectrochemical water splitting: dual bulk and surface modification of photoanodes , 2015 .

[199]  Zhengcao Li,et al.  Enhanced photoelectrochemical and photocatalytic performance of TiO2 nanorod arrays/CdS quantum dots by coating TiO2 through atomic layer deposition , 2015 .

[200]  Sang Jin Kim,et al.  High Efficiency Solid‐State Dye‐Sensitized Solar Cells Assembled with Hierarchical Anatase Pine Tree‐like TiO2 Nanotubes , 2014 .

[201]  H. Dinh,et al.  Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols , 2013 .

[202]  Aaron J. Sathrum,et al.  Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. , 2009, Chemical Society reviews.

[203]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[204]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[205]  H. Gleiter,et al.  Nanostructured materials: basic concepts and microstructure☆ , 2000 .

[206]  A. Bard,et al.  The Concept of Fermi Level Pinning at Semiconductor/Liquid Junctions. Consequences for Energy Conversion Efficiency and Selection of Useful Solution Redox Couples in Solar Devices , 1980 .