Bioinformatics tools for the functional interpretation of quantitative proteomics results.

Proteins are the principal mediators of the functions in the cell; therefore, any abnormal variations on their abundance levels may reflect the presence of pathological processes. In this sense, many researchers rely on the functional interpretation of protein lists generated by quantitative proteomics experiments to analyze, for instance, these variations in the context of diseases' molecular basis and drug discovery. Since no analytical strategy or bioinformatics tool by itself is capable of extract all the information covered by a single experiment; herein we seek to provide the biologists with four groups of different but complementary bioinformatics tools for the functional interpretation of quantitative proteomics results. To this end we will review the basic concepts of a set of different bioinformatics approaches and we will give examples of freely available tools for each one of these approaches.

[1]  Gary D. Bader,et al.  clusterMaker: a multi-algorithm clustering plugin for Cytoscape , 2011, BMC Bioinformatics.

[2]  Aleksandar Stojmirovic,et al.  Robust and accurate data enrichment statistics via distribution function of sum of weights , 2010, Bioinform..

[3]  Hao Chen,et al.  Content-rich biological network constructed by mining PubMed abstracts , 2004, BMC Bioinformatics.

[4]  Jing Chen,et al.  ToppGene Suite for gene list enrichment analysis and candidate gene prioritization , 2009, Nucleic Acids Res..

[5]  D. Alonso,et al.  Proteomic profile regulated by the anticancer peptide CIGB-300 in non-small cell lung cancer (NSCLC) cells. , 2010, Journal of proteome research.

[6]  K. Bretonnel Cohen,et al.  Getting Started in Text Mining , 2008, PLoS Comput. Biol..

[7]  Rafael C. Jimenez,et al.  The IntAct molecular interaction database in 2012 , 2011, Nucleic Acids Res..

[8]  Ozlem Keskin,et al.  Topological properties of protein interaction networks from a structural perspective. , 2008, Biochemical Society transactions.

[9]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[10]  Eloisa Vargiu,et al.  Literature Retrieval and Mining in Bioinformatics: State of the Art and Challenges , 2012, Adv. Bioinformatics.

[11]  Pooja Mittal,et al.  A novel signaling pathway impact analysis , 2009, Bioinform..

[12]  Zhiyong Lu,et al.  PubMed and beyond: a survey of web tools for searching biomedical literature , 2011, Database J. Biol. Databases Curation.

[13]  Giovanni Scardoni,et al.  Analyzing biological network parameters with CentiScaPe , 2009, Bioinform..

[14]  Henning Hermjakob,et al.  Analyzing protein-protein interaction networks. , 2012, Journal of proteome research.

[15]  Michael Schroeder,et al.  GoPubMed: exploring PubMed with the Gene Ontology , 2005, Nucleic Acids Res..

[16]  S. Gong,et al.  Gene expression in accumbens GABA neurons from inbred rats with different drug‐taking behavior , 2011, Genes, brain, and behavior.

[17]  K. Dolinski,et al.  Use and misuse of the gene ontology annotations , 2008, Nature Reviews Genetics.

[18]  Dietrich Rebholz-Schuhmann,et al.  EBIMed - text crunching to gather facts for proteins from Medline , 2007, Bioinform..

[19]  Michael R. Seringhaus,et al.  Seeking a New Biology through Text Mining , 2008, Cell.

[20]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[21]  Matthias Mann,et al.  In-depth Analysis of the Adipocyte Proteome by Mass Spectrometry and Bioinformatics*S , 2007, Molecular & Cellular Proteomics.

[22]  David S. Wishart,et al.  Nucleic Acids Research Polysearch: a Web-based Text Mining System for Extracting Relationships between Human Diseases, Genes, Mutations, Drugs Polysearch: a Web-based Text Mining System for Extracting Relationships between Human Diseases, Genes, Mutations, Drugs and Metabolites , 2008 .

[23]  Dietrich Rebholz-Schuhmann,et al.  Categorization of services for seeking information in biomedical literature: a typology for improvement of practice , 2008, Briefings Bioinform..

[24]  Gary D Bader,et al.  A travel guide to Cytoscape plugins , 2012, Nature Methods.

[25]  Lincoln Stein,et al.  Reactome: a database of reactions, pathways and biological processes , 2010, Nucleic Acids Res..

[26]  Leigh Anderson,et al.  Candidate‐based proteomics in the search for biomarkers of cardiovascular disease , 2005, The Journal of physiology.

[27]  Fidel Ramírez,et al.  Computing topological parameters of biological networks , 2008, Bioinform..

[28]  Maurice Bouwhuis,et al.  CoPub: a literature-based keyword enrichment tool for microarray data analysis , 2008, Nucleic Acids Res..

[29]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[30]  Yu Liu,et al.  Gene interaction enrichment and network analysis to identify dysregulated pathways and their interactions in complex diseases , 2012, BMC Systems Biology.

[31]  K. Becker,et al.  The Genetic Association Database , 2004, Nature Genetics.

[32]  R. Sharan,et al.  Protein networks in disease. , 2008, Genome research.

[33]  Shawn M. Douglas,et al.  PubNet: a flexible system for visualizing literature derived networks , 2005, Genome Biology.

[34]  Xiang-Sun Zhang,et al.  NOA: a novel Network Ontology Analysis method , 2011, Nucleic acids research.

[35]  Gary D. Bader,et al.  GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop , 2010, Bioinform..

[36]  James E Ferrell Q&A: Systems biology , 2009, Journal of biology.

[37]  Reinhard Schneider,et al.  Martini: using literature keywords to compare gene sets , 2009, Nucleic acids research.

[38]  Sanghyuk Lee,et al.  GoBean: a Java GUI application for visual exploration of GO term enrichments. , 2012, BMB reports.

[39]  Paul A. Bates,et al.  Global topological features of cancer proteins in the human interactome , 2006, Bioinform..

[40]  Karthik Raman,et al.  Construction and analysis of protein–protein interaction networks , 2010, Automated experimentation.

[41]  Martin Kuiper,et al.  BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks , 2005, Bioinform..

[42]  Joel S. Bader,et al.  NeMo: Network Module identification in Cytoscape , 2010, BMC Bioinformatics.

[43]  Mounir Errami,et al.  eTBLAST: a web server to identify expert reviewers, appropriate journals and similar publications , 2007, Nucleic Acids Res..

[44]  Melissa J. Davis,et al.  Rewiring the dynamic interactome. , 2012, Molecular bioSystems.

[45]  David Liu,et al.  DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis , 2007, BMC Bioinformatics.

[46]  Haruki Nakamura,et al.  Filtering high-throughput protein-protein interaction data using a combination of genomic features , 2005, BMC Bioinformatics.

[47]  Georgios A. Pavlopoulos,et al.  Caipirini: using gene sets to rank literature , 2012, BioData Mining.

[48]  Bart De Moor,et al.  Endeavour update: a web resource for gene prioritization in multiple species , 2008, Nucleic Acids Res..

[49]  Y. Moreau,et al.  Computational tools for prioritizing candidate genes: boosting disease gene discovery , 2012, Nature Reviews Genetics.

[50]  Jing Gao,et al.  Integrating and annotating the interactome using the MiMI plugin for cytoscape , 2009, Bioinform..

[51]  Gary D. Bader,et al.  Pathguide: a Pathway Resource List , 2005, Nucleic Acids Res..

[52]  Gary D Bader,et al.  PSICQUIC and PSISCORE: accessing and scoring molecular interactions , 2011, Nature Methods.

[53]  Atul J. Butte,et al.  Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges , 2012, PLoS Comput. Biol..

[54]  J. Sainis,et al.  Modularity: a new perspective in biology. , 2007, Indian journal of biochemistry & biophysics.

[55]  Bart De Moor,et al.  A guide to web tools to prioritize candidate genes , 2011, Briefings Bioinform..

[56]  Ali Masoudi-Nejad,et al.  RETRACTED ARTICLE: Candidate gene prioritization , 2012, Molecular Genetics and Genomics.

[57]  M. Gerstein,et al.  Getting connected: analysis and principles of biological networks. , 2007, Genes & development.

[58]  Meng-Pin Weng,et al.  MamPhEA: a web tool for mammalian phenotype enrichment analysis , 2010, Bioinformatics.

[59]  A. Valencia,et al.  Text-mining and information-retrieval services for molecular biology , 2005, Genome Biology.

[60]  Michael Schroeder,et al.  Facts from text: can text mining help to scale-up high-quality manual curation of gene products with ontologies? , 2008, Briefings Bioinform..

[61]  M. He,et al.  PPI Finder: A Mining Tool for Human Protein-Protein Interactions , 2009, PloS one.

[62]  K. Bretonnel Cohen,et al.  The structural and content aspects of abstracts versus bodies of full text journal articles are different , 2010, BMC Bioinformatics.

[63]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[64]  Jaques Reifman,et al.  PathNet: a tool for pathway analysis using topological information , 2012, Source Code for Biology and Medicine.

[65]  Jason Y. Liu,et al.  Analysis of protein sequence and interaction data for candidate disease gene prediction , 2006, Nucleic acids research.

[66]  A. Valencia,et al.  A gene network for navigating the literature , 2004, Nature Genetics.

[67]  P. Khatri,et al.  A systems biology approach for pathway level analysis. , 2007, Genome research.

[68]  Alan F. Scott,et al.  Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders , 2004, Nucleic Acids Res..

[69]  B. Koop,et al.  GO Trimming: Systematically reducing redundancy in large Gene Ontology datasets , 2011, BMC Research Notes.

[70]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[71]  Yan Lin,et al.  An R package suite for microarray meta-analysis in quality control, differentially expressed gene analysis and pathway enrichment detection , 2012, Bioinform..

[72]  Michael Schroeder,et al.  GoGene: gene annotation in the fast lane , 2009, Nucleic Acids Res..

[73]  K. Cohen,et al.  Biomedical language processing: what's beyond PubMed? , 2006, Molecular cell.

[74]  Alberto D. Pascual-Montano,et al.  GeneCodis3: a non-redundant and modular enrichment analysis tool for functional genomics , 2012, Nucleic Acids Res..

[75]  R. Sanz-Pamplona,et al.  Tools for protein-protein interaction network analysis in cancer research , 2012, Clinical and Translational Oncology.

[76]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[77]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[78]  Jochen R. Moehr,et al.  Terminological Problems in Information Retrieval , 2003, Journal of Medical Systems.

[79]  Raul Rodriguez-Esteban,et al.  Biomedical Text Mining and Its Applications , 2009, PLoS Comput. Biol..

[80]  A. Valencia,et al.  Linking genes to literature: text mining, information extraction, and retrieval applications for biology , 2008, Genome Biology.

[81]  A. Aderem Systems Biology: Its Practice and Challenges , 2005, Cell.

[82]  Rainer Malik,et al.  From proteome lists to biological impact– tools and strategies for the analysis of large MS data sets , 2010, Proteomics.

[83]  Matthew Suderman,et al.  Tools for visually exploring biological networks , 2007, Bioinform..

[84]  W. John Wilbur,et al.  PIE the search: searching PubMed literature for protein interaction information , 2012, Bioinform..

[85]  Pornpimol Charoentong,et al.  ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks , 2009, Bioinform..

[86]  Sanghyuk Lee,et al.  GARNET – gene set analysis with exploration of annotation relations , 2011, BMC Bioinformatics.

[87]  Kara Dolinski,et al.  The BioGRID Interaction Database: 2011 update , 2010, Nucleic Acids Res..

[88]  Kahn Rhrissorrakrai,et al.  MINE: Module Identification in Networks , 2011, BMC Bioinformatics.

[89]  Brad T. Sherman,et al.  DAVID gene ID conversion tool , 2008, Bioinformation.

[90]  M. Teresa Pisabarro,et al.  PhenoFam-gene set enrichment analysis through protein structural information , 2010, BMC Bioinformatics.

[91]  Allan Kuchinsky,et al.  An architecture for biological information extraction and representation , 2005, Bioinform..

[92]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Damian Szklarczyk,et al.  The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored , 2010, Nucleic Acids Res..

[94]  Meng-Pin Weng,et al.  Dro PhEA : Drosophila phenotype enrichment analysis for insect functional genomics , 2011 .

[95]  P. Drew,et al.  Differential proteomics in the search for biomarkers of radiotherapy resistance , 2011, Expert review of proteomics.

[96]  Philip E. Bourne,et al.  BioLit: integrating biological literature with databases , 2008, Nucleic Acids Res..

[97]  Preslav Nakov,et al.  BioText Search Engine: beyond abstract search , 2007, Bioinform..