Current-Voltage Characteristics of Platinum Model Electrodes on Yttria-Stabilized Zirconia
暂无分享,去创建一个
Jürgen Fleig | Tobias Huber | Juergen Fleig | A. Opitz | T. Huber | Alexander K. Opitz | Michael P. Hörlein | M. Hoerlein
[1] Neil Leslie Robertson,et al. Double Layer Capacitance of Porous Platinum Electrodes in Zirconia Electrochemical Cells , 1991 .
[2] Joshua L. Hertz,et al. Measurement and finite element modeling of triple phase boundary-related current constriction in YSZ , 2007 .
[3] J. Janek,et al. Epitaxial Pt(111) thin film electrodes on YSZ(111) and YSZ(100) - : Preparation and characterisation , 2007 .
[4] D. Y. Wang. Low‐Temperature Diffusion‐Controlled Polarization of Pt Electrodes with Yttria‐Stabilized Zirconia Electrolyte , 1990 .
[5] Suk Woo Nam,et al. Characteristics of cathodic polarization at Pt/YSZ interface without the effect of electrode microstructure , 2003 .
[6] Koji Amano,et al. Electrode reaction at Pt, O2(g)/stabilized zirconia interfaces. Part II: Electrochemical measurements and analysis , 1987 .
[7] J. Herle,et al. Oxygen reduction at porous and dense cathodes for solid oxide fuel cells , 1994 .
[8] Jürgen Fleig,et al. Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-δ model electrodes , 2006 .
[9] Carsten Korte,et al. Electrochemical blackening of yttria-stabilized zirconia – morphological instability of the moving reaction front , 1999 .
[11] Ludwig J. Gauckler,et al. Reaction kinetics of the Pt, O2(g)|c-ZrO2 system : precursor-mediated adsorption , 1999 .
[12] S. Adler. Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.
[13] Christos Comninellis,et al. Charge storage in the O2(g), Pt/YSZ system , 2007 .
[14] Young Beom Kim,et al. Nanopore Patterned Pt Array Electrodes for Triple Phase Boundary Study in Low Temperature SOFC , 2010 .
[15] T. Jacobsen,et al. Surface Intermediates on Metal Electrodes at High Temperature , 1998 .
[16] Juergen Fleig,et al. Investigation of O2 reduction on Pt/YSZ by means of thin film microelectrodes: The geometry dependence of the electrode impedance , 2010 .
[17] R. N. Blumenthal,et al. Electronic Transport in 8 Mole Percent Y[sub 2]O[sub 3]-ZrO[sub 2] , 1989 .
[18] M. Verkerk,et al. Oxygen Transfer on Substituted ZrO2, Bi2O3, and CeO2 Electrolytes with Platinum Electrodes. I. Electrode Resistance by D-C Polarization , 1983 .
[19] L. Gauckler,et al. Microscopic and Nanoscopic Three‐Phase‐Boundaries of Platinum Thin‐Film Electrodes on YSZ Electrolyte , 2011 .
[20] Juergen Fleig. On the current-voltage characteristics of charge transfer reactions at mixed conducting electrodes on solid electrolytes. , 2005, Physical chemistry chemical physics : PCCP.
[21] Juergen Fleig. Microelectrodes in solid state ionics , 2003 .
[22] G. Fóti,et al. Oxygen storage in O2/Pt/YSZ cell , 2009 .
[23] J. Janek,et al. Electrocatalysis on Pt/YSZ electrodes , 2001 .
[24] I. Chorkendorff,et al. Effect of impurities on structural and electrochemical properties of the Ni-YSZ interface. , 2003 .
[25] Jürgen Fleig,et al. Solid Oxide Fuel Cell Cathodes: Polarization Mechanisms and Modeling of the Electrochemical Performance , 2003 .
[26] T. Jacobsen,et al. Dynamics of the YSZ-Pt interface , 1997 .
[27] Torben Jacobsen,et al. Thermal memory effects at the Pt ∣ YSZ interface , 2001 .
[28] Ellen Ivers-Tiffée,et al. Principles of solid state oxygen sensors for lean combustion gas control , 2001 .
[29] H. Verweij,et al. The defect structure of the double layer in yttria-stabilised zirconia , 2002 .
[30] F. Baumann,et al. Thin Film Microelectrodes in SOFC Electrode Research , 2006 .
[31] S. Bebelis,et al. Electrochemical promotion of the oxidation of propane on Pt/YSZ and Rh/YSZ catalyst-electrodes , 2005 .
[32] Koji Amano,et al. Electrode reaction at Pt, O2(g)/stabilized zirconia interfaces. Part I: Theoretical consideration of reaction model , 1987 .
[33] N. Sakai,et al. A novel technique for imaging electrochemical reaction sites on a solid oxide electrolyte , 2000 .
[34] A. Schintlmeister,et al. Visualization of oxygen reduction sites at Pt electrodes on YSZ by means of 18O tracer incorporation: the width of the electrochemically active zone. , 2010, Physical chemistry chemical physics : PCCP.
[35] Henk Verweij,et al. The electrochemical double-layer capacitance of yttria-stabilised zirconia , 2002 .
[36] J. Janek,et al. Structural, morphological and kinetic properties of model type thin film platinum electrodes on YSZ , 2008 .
[37] Y. Yamakoshi,et al. An Estimation of the Electrode‐Electrolyte Contact Area by Linear Sweep Voltammetry in Pt / ZrO2 Oxygen Electrodes , 1993 .
[38] B. Santo,et al. Solid State , 2012 .
[39] A. Schintlmeister,et al. The determination of the three-phase boundary width of solid oxide fuel cell cathodes by current-driven 18O tracer incorporation , 2011 .
[40] B. Lee,et al. Electrical characterization of the platinum/YSZ interfaces in SOFCs via micro-contact impedance spectroscopy , 2006 .
[41] Torben Jacobsen,et al. Three-phase-boundary dynamics at Pt/YSZ microelectrodes , 2007 .
[42] Juergen Fleig,et al. Investigation of the oxygen exchange mechanism on Pt|yttria stabilized zirconia at intermediate temperatures: Surface path versus bulk path , 2011, Electrochimica acta.
[43] C. Vayenas,et al. Dependence of catalytic rates on catalyst work function , 1990, Nature.
[44] J. Janek,et al. Characterization of chemical composition and electronic structure of Pt/YSZ interfaces by analytical transmission electron microscopy , 2010 .
[45] W. Chueh,et al. Electrochemical behavior of ceria with selected metal electrodes , 2008 .
[46] M. Verkerk,et al. Oxygen Transfer on Substituted ZrO2, Bi2O3, and CeO2 Electrolytes with Platinum Electrodes II. A-C Impedance Study , 1983 .
[47] J. Guindet,et al. Classification Criteria for Solid Oxide Fuel Cell Electrode Materials , 1997 .
[48] C. Tracy,et al. REDUCED OXYGEN DIFFUSION THROUGH BERYLLIUM DOPED PLATINUM ELECTRODES , 1999, cond-mat/9903082.
[49] C. Comninellis,et al. Charge storage at the Pt/YSZ interface , 2009 .
[50] J. Hertz,et al. Nanocomposite Platinum–Yttria Stabilized Zirconia Electrode and Implications for Micro-SOFC Operation , 2007 .
[51] E. Ahlgren,et al. Thermoelectric power of YSZ , 1994 .
[52] Joachim Maier,et al. Physical Chemistry of Ionic Materials: Ions and Electrons in Solids , 2004 .
[53] J. Janek,et al. In situ imaging of electrode processes on solid electrolytes by photoelectron microscopy and microspectroscopy – the role of the three-phase boundary , 2007 .
[54] C. Schwandt,et al. Kinetics of Oxygen, Platinum/Stabilized Zirconia and Oxygen, Gold/Stabilized Zirconia Electrodes under Equilibrium Conditions , 1997 .
[55] A. Nowick,et al. Cathodic and Anodic Polarization Phenomena at Platinum Electrodes with Doped CeO2 as Electrolyte II . Transient Overpotential and A‐C Impedance , 1979 .
[56] Fritz B. Prinz,et al. High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation , 2007 .
[57] J. Newman. Resistance for Flow of Current to a Disk , 1966 .
[58] J. Jamnik,et al. Treatment of the Impedance of Mixed Conductors Equivalent Circuit Model and Explicit Approximate Solutions , 1999 .
[59] J. Janek,et al. In situ imaging of electrochemically induced oxygen spillover on Pt/YSZ catalysts. , 2006, Angewandte Chemie.
[60] Estimation of Charge-Transfer Resistivity of Pt Cathode on YSZ Electrolyte Using Patterned Electrodes , 2005 .
[61] J. Janek,et al. The electrode model system Pt(O2)|YSZ: Influence of impurities and electrode morphology on cyclic voltammograms , 2009 .
[62] Thermodynamic Stability and Interfacial Impedance of Solid-Electrolyte Cells with Noble-Metal Electrodes , 1999 .
[63] Y. Shao-horn,et al. Impedance Spectroscopy Studies of Oxygen Reduction Reaction on Thin Film Platinum Microelectrodes Supported on YSZ , 2007 .
[64] Johann Riegel,et al. Exhaust gas sensors for automotive emission control , 2002 .
[65] Ilia Valov,et al. Electrode activation and degradation : Morphology changes of platinum electrodes on YSZ during electrochemical polarisation , 2008 .
[66] G. Fafilek,et al. Voltammetric studies of electrochemical processes at the interface Pt|YSZ between 300 and 600°C , 1997 .
[67] Neil Leslie Robertson,et al. Oxygen exchange on platinum electrodes in zirconia cells; Location of electrochemical reaction sites , 1990 .
[68] Ludwig J. Gauckler,et al. Identification of the reaction mechanism of the Pt, O2(g)|yttria-stabilized zirconia system: Part I: General framework, modelling, and structural investigation , 1999 .
[69] Max J. Schulz,et al. Oxygen diffusion through thin Pt films on Si(100) , 1996 .
[70] J. Hertz,et al. Highly enhanced electrochemical performance of silicon-free platinum–yttria stabilized zirconia interfaces , 2009 .