An interior point algorithm for global optimal solutions and KKT points
暂无分享,去创建一个
[1] M. Todd,et al. Mathematical Developments Arising from Linear Programming , 1990 .
[2] Susan W. Palocsay,et al. Optimizing the sum of linear fractional functions , 1992 .
[3] Narendra Karmarkar,et al. A new polynomial-time algorithm for linear programming , 1984, Comb..
[4] T Talaky,et al. Interior Point Methods of Mathematical Programming , 1997 .
[5] Y. Almogy,et al. A Class of Fractional Programming Problems , 1971, Oper. Res..
[6] Solomon Lefschetz,et al. Stability by Liapunov's Direct Method With Applications , 1962 .
[7] M. C. Recchioni,et al. A Quadratically Convergent Method for Linear Programming , 1991 .
[8] P. Wolfe. On the convergence of gradient methods under constraint , 1972 .
[9] On the convergence of the projected gradient method , 1993 .
[10] D. Bayer,et al. The nonlinear geometry of linear programming. II. Legendre transform coordinates and central trajectories , 1989 .
[11] Hiroshi Konno,et al. Minimizing and maximizing the product of linear fractional functions , 1992 .
[12] Renato D. C. Monteiro,et al. Interior path following primal-dual algorithms. part II: Convex quadratic programming , 1989, Math. Program..
[13] Singiresu S. Rao,et al. Optimization Theory and Applications , 1980, IEEE Transactions on Systems, Man, and Cybernetics.
[14] Yinyu Ye,et al. An extension of Karmarkar's projective algorithm for convex quadratic programming , 1989, Math. Program..
[15] K. Swarup. Letter to the Editor-Linear Fractional Functionals Programming , 1965 .
[16] A. Cambini,et al. On Maximizing a Sum of Ratios , 1989 .
[17] John N. Hooker,et al. Karmarkar’s Linear Programming Algorithm , 1986 .
[18] R. C. Monteiro,et al. Interior path following primal-dual algorithms , 1988 .
[19] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[20] D. Bayer,et al. The Non-Linear Geometry of Linear Pro-gramming I: A?ne and projective scaling trajectories , 1989 .
[21] Maria Cristina Recchioni,et al. Monotone Variable–Metric Algorithm for Linearly Constrained Nonlinear Programming , 2000 .