A bandit-learning approach to multifidelity approximation

Multifidelity approximation is an important technique in scientific computation and simulation. In this paper, we introduce a bandit-learning approach for leveraging data of varying fidelities to achieve precise estimates of the parameters of interest. Under a linear model assumption, we formulate a multifidelity approximation as a modified stochastic bandit, and analyze the loss for a class of policies that uniformly explore each model before exploiting. Utilizing the estimated conditional mean-squared error, we propose a consistent algorithm, adaptive Explore-Then-Commit (AETC), and establish a corresponding trajectory-wise optimality result. These results are then extended to the case of vector-valued responses, where we demonstrate that the algorithm is efficient without the need to worry about estimating high-dimensional parameters. The main advantage of our approach is that we require neither hierarchical model structure nor a priori knowledge of statistical information (e.g., correlations) about or between models. Instead, the AETC algorithm requires only knowledge of which model is a trusted high-fidelity model, along with (relative) computational cost estimates of querying each model. Numerical experiments are provided at the end to support our theoretical findings.

[1]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[2]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[3]  Dongbin Xiu,et al.  A Stochastic Collocation Algorithm with Multifidelity Models , 2014, SIAM J. Sci. Comput..

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Aurélien Garivier,et al.  Optimal Best Arm Identification with Fixed Confidence , 2016, COLT.

[6]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[7]  Dominik D. Freydenberger,et al.  Can We Learn to Gamble Efficiently? , 2010, COLT.

[8]  Peter Auer,et al.  Near-optimal Regret Bounds for Reinforcement Learning , 2008, J. Mach. Learn. Res..

[9]  Benjamin Peherstorfer,et al.  Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..

[10]  Michael S. Eldred,et al.  Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies , 2004 .

[11]  Kirthevasan Kandasamy,et al.  The Multi-fidelity Multi-armed Bandit , 2016, NIPS.

[12]  Paul Bratley,et al.  A guide to simulation , 1983 .

[13]  C. Fox,et al.  Markov chain Monte Carlo Using an Approximation , 2005 .

[14]  Archie C. Chapman,et al.  Epsilon-First Policies for Budget-Limited Multi-Armed Bandits , 2010, AAAI.

[15]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[16]  Nicolò Cesa-Bianchi,et al.  Gambling in a rigged casino: The adversarial multi-armed bandit problem , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[17]  John N. Tsitsiklis,et al.  Linearly Parameterized Bandits , 2008, Math. Oper. Res..

[18]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[19]  Phaedon-Stelios Koutsourelakis,et al.  Accurate Uncertainty Quantification Using Inaccurate Computational Models , 2009, SIAM J. Sci. Comput..

[20]  P. A. Newman,et al.  Approximation and Model Management in Aerodynamic Optimization with Variable-Fidelity Models , 2001 .

[21]  Leo Wai-Tsun Ng,et al.  Monte Carlo Information-Reuse Approach to Aircraft Conceptual Design Optimization Under Uncertainty , 2016 .

[22]  Benjamin Peherstorfer,et al.  Density Estimation with Adaptive Sparse Grids for Large Data Sets , 2014, SDM.

[23]  Hans C. van Houwelingen,et al.  The Elements of Statistical Learning, Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani and Jerome Friedman, Springer, New York, 2001. No. of pages: xvi+533. ISBN 0‐387‐95284‐5 , 2004 .

[24]  Djallel Bouneffouf,et al.  A Survey on Practical Applications of Multi-Armed and Contextual Bandits , 2019, ArXiv.

[25]  R. Haftka,et al.  Multifidelity Surrogate Based on Single Linear Regression , 2017, AIAA Journal.

[26]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[27]  M. Eldred,et al.  MFNets: MULTI-FIDELITY DATA-DRIVEN NETWORKS FOR BAYESIAN LEARNING AND PREDICTION , 2020, International Journal for Uncertainty Quantification.

[28]  Qing Zhao,et al.  Multi-Armed Bandits: Theory and Applications to Online Learning in Networks , 2019, Multi-Armed Bandits.

[29]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[30]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[31]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[32]  Akil Narayan,et al.  Budget-limited distribution learning in multifidelity problems , 2021, ArXiv.

[33]  Andrew J Majda,et al.  Quantifying uncertainty in climate change science through empirical information theory , 2010, Proceedings of the National Academy of Sciences.

[34]  Max Gunzburger,et al.  A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2014, SIAM/ASA J. Uncertain. Quantification.

[35]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[36]  Elisabeth Ullmann,et al.  On Multilevel Best Linear Unbiased Estimators , 2020, SIAM/ASA J. Uncertain. Quantification.

[37]  Csaba Szepesvari,et al.  Bandit Algorithms , 2020 .

[38]  Barry L. Nelson,et al.  On control variate estimators , 1987, Comput. Oper. Res..

[39]  W. R. Thompson ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLES , 1933 .

[40]  Anders Clausen,et al.  Efficient topology optimization in MATLAB using 88 lines of code , 2011 .

[41]  Benjamin Peherstorfer,et al.  Optimal Model Management for Multifidelity Monte Carlo Estimation , 2016, SIAM J. Sci. Comput..

[42]  T. L. Lai Andherbertrobbins Asymptotically Efficient Adaptive Allocation Rules , 2022 .

[43]  Sham M. Kakade,et al.  Towards Minimax Policies for Online Linear Optimization with Bandit Feedback , 2012, COLT.

[44]  Geoff K. Nicholls,et al.  Sampling Conductivity Images via MCMC , 2007 .

[45]  Gianluca Geraci,et al.  A generalized approximate control variate framework for multifidelity uncertainty quantification , 2018, J. Comput. Phys..

[46]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[47]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[48]  Archie C. Chapman,et al.  Knapsack Based Optimal Policies for Budget-Limited Multi-Armed Bandits , 2012, AAAI.

[49]  J. Walrand,et al.  Asymptotically efficient allocation rules for the multiarmed bandit problem with multiple plays-Part II: Markovian rewards , 1987 .

[50]  Thomas P. Hayes,et al.  Stochastic Linear Optimization under Bandit Feedback , 2008, COLT.

[51]  T. Lai,et al.  Least Squares Estimates in Stochastic Regression Models with Applications to Identification and Control of Dynamic Systems , 1982 .

[52]  Rémi Bardenet,et al.  Monte Carlo Methods , 2013, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[53]  A. Antoulas,et al.  H 2 Model Reduction for Large-scale Linear Dynamical Systems * , 2022 .

[54]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[55]  S. Mendelson,et al.  On singular values of matrices with independent rows , 2006 .

[56]  J. Gittins Bandit processes and dynamic allocation indices , 1979 .

[57]  Peter Auer,et al.  UCB revisited: Improved regret bounds for the stochastic multi-armed bandit problem , 2010, Period. Math. Hung..

[58]  Rémi Munos,et al.  Pure Exploration in Multi-armed Bandits Problems , 2009, ALT.

[59]  Elisabeth Ullmann,et al.  Asymptotic Analysis of Multilevel Best Linear Unbiased Estimators , 2020, SIAM/ASA J. Uncertain. Quantification.

[60]  Roman Vershynin,et al.  High-Dimensional Probability , 2018 .

[61]  Peter Auer,et al.  The Nonstochastic Multiarmed Bandit Problem , 2002, SIAM J. Comput..

[62]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[63]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..