Comparison of the depth where Planktothrix rubescens stratifies and the depth where the daily insolation supports its neutral buoyancy

Summary • Comparisons were made of the depths where the cyanobacterium Planktothrix rubescens stratified in lakes and the depths where the daily insolation supported neutral buoyancy of the organism. • The percentage of filaments floating and sinking were measured in cultures grown under light : dark cycles at different irradiances. Qn, the daily insolation for neutral buoyancy, was determined as that at which 50% of the filaments were floating, averaged over the 24-h period. • For P. rubescens 9316 from Lake Zurich, Qn was 0.28 mol m−2; during the summer period of stratification in Lake Zurich, the neutral buoyancy depth (zn) at which this insolation occurred varied between 5 and 14 m, depending on cloud cover and light attenuation. The weekly mean depth of the Planktothrix population maximum (zp) was usually within 1 m of the mean zn. For P. rubescens 9972 from Blelham Tarn, Qn was 0.51 mol m−2; during the stratified period in Blelham Tarn, zn varied between 2.3 and 6.2 m, also similar to zp; the shallower stratification depth is explained by the steeper light attenuation. • The depth at which Planktothrix stratifies in lakes is therefore explained by buoyancy regulation in relation to the irradiance. Metalimnetic stratification occurs only when zn exceeds the mixed depth, zm; when zm > zn, the organism becomes entrained in the surface mixed layer.

[1]  Phillip A. Davis,et al.  The annual cycle of growth rate and biomass change in Planktothrix spp. in Blelham Tarn, English Lake District , 2003 .

[2]  A. Walsby,et al.  Comparison of measured growth rates with those calculated from rates of photosynthesis in Planktothrix spp. isolated from Blelham Tarn, English Lake District. , 2002, The New phytologist.

[3]  A. Walsby,et al.  Light-dependent growth rate determines changes in the population of Planktothrix rubescens over the annual cycle in Lake Zürich, Switzerland. , 2002, The New phytologist.

[4]  Z. Dubinsky,et al.  The effects of diel changes in photosynthetic coefficients and depth of Planktothrix rubescens on the daily integral of photosynthesis in Lake Zürich , 2001, Aquatic Sciences.

[5]  Z. Dubinsky,et al.  Diel buoyancy changes by the cyanobacterium Aphanizomenon ovalisporum from a shallow reservoir , 2001 .

[6]  A. Walsby Determining the photosynthetic productivity of a stratified phytoplankton population , 2001, Aquatic Sciences.

[7]  A. Walsby,et al.  The daily integral of growth by Planktothrix rubescens calculated from growth rate in culture and irradiance in Lake Zürich. , 2000, The New phytologist.

[8]  A. Walsby,et al.  The daily integral of photosynthesis by Planktothrix rubescens during summer stratification and autumnal mixing in Lake Zürich , 1998 .

[9]  A. Walsby Numerical integration of phytoplankton photosynthesis through time and depth in a water column , 1997 .

[10]  R. Oliver FLOATING AND SINKING IN GAS‐VACUOLATE CYANOBACTERIA1 , 1994 .

[11]  W. Vincent Cyanobacterial Growth and Dominance in Two Eutrophic Lakes , 1989 .

[12]  A. Konopka Metalimnetic cyanobacteria in hard‐water lakes: Buoyancy regulation and physiological state , 1989 .

[13]  J. Imberger,et al.  Mixing processes relevant to phytoplankton dynamics in lakes , 1987 .

[14]  A. Konopka,et al.  Buoyancy regulation in phosphate-limited cultures of Microcystis aeruginosa , 1987 .

[15]  A. Konopka,et al.  REGULATION OF GAS VESICLE CONTENT AND BUOYANCY IN LIGHT‐ OR PHOSPHATE‐LIMITED CULTURES OF APHANIZOMENON FLOS‐AQUAE (CYANOPHYTA) 1 , 1987 .

[16]  B. Osborne,et al.  Light and Photosynthesis in Aquatic Ecosystems. , 1985 .

[17]  M. Klug,et al.  Current Perspectives in Microbial Ecology , 1985 .

[18]  C. N. Spencer,et al.  INTERACTIONS BETWEEN LIGHT, NH4+, AND CO2 IN BUOYANCY REGULATION OF ANABAENA FLOS‐AQUAE (CYANOPHYCEAE) 1 , 1985 .

[19]  R. H. Thomas,et al.  Buoyancy Regulation in a Strain of Microcystis , 1985 .

[20]  R. Oliver,et al.  Buoyancy regulation in a red Oscillatoria unable to collapse gas vacuoles by turgor pressure , 1985, Archiv für Hydrobiologie.

[21]  R. Oliver,et al.  Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena flos-aquae (cyanobacteria) , 1984 .

[22]  Colin S. Reynolds,et al.  Growth- and loss-rate responses of phytoplankton to intermittent artificial mixing and their potential application to the control of planktonic algal biomass , 1984 .

[23]  A. Walsby,et al.  The biology of a new gas-vacuolate cyanobacterium, Dactylococcopsis salina sp. nov., in Solar Lake , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[24]  A. Klemer,et al.  Cyanobacterial Blooms: Carbon and Nitrogen Limitation Have Opposite Effects on the Buoyancy of Oscillatoria , 1982, Science.

[25]  A. Walsby,et al.  Changes in buoyancy of a planktonic blue-green alga in response to light intensity , 1980 .

[26]  A. Klemer Nitrogen limitation of growth and gas vacuolation in Oscillatoria rubescens: With 2 figures and 1 table in the text , 1978 .

[27]  R. V. Smith,et al.  The influence of daylength, light intensity and temperature on the growth rates of planktonic blue-green algae , 1976 .

[28]  A. Walsby,et al.  The Interrelations of Cell Turgor Pressure, Gas-vacuolation, and Buoyancy in a Blue-green Alga , 1972 .

[29]  A. Walsby The permeability of blue-green algal gas-vacuole membranes to gas , 1969, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[30]  J. Lund Buoyancy in relation to the ecology of the freshwater phytoplankton , 1959 .

[31]  U. Zimmermann,et al.  Ökologische und physiologische Untersuchungen an der planktischen BlaualgeOscillatoria rubescens D.C. unter besonderer Berücksichtigung von Licht und Temperatur , 2006, Schweizerische Zeitschrift für Hydrologie.

[32]  S. J. Beard,et al.  Variation in filament width and gas vesicles of red and green isolates of Planktothrix spp. , 2003 .

[33]  Brian A. Whitton,et al.  The Ecology of Cyanobacteria , 2002, Springer Netherlands.

[34]  A. Walsby,et al.  The critical pressures of gas vesicles in Planktorhrix rubescens in relation tothe depth of winter mixing in Lake Zürich, Switzerland , 1998 .

[35]  A. Walsby,et al.  Gas vesicles , 1994, Microbiological reviews.

[36]  Jacco C. Kromkamp,et al.  A computer model of buoyancy and vertical migration in cyanobacteria , 1990 .

[37]  C. Reynolds,et al.  The role of gas vacuoles and carbohydrate content in the buoyancy and vertical distribution of Anabaena minutissima in Lake Rotongaio, New Zealand , 1989 .

[38]  Colin S. Reynolds,et al.  Cyanobacterial Water-Blooms , 1987 .

[39]  Colin S. Reynolds,et al.  The ecology of freshwater phytoplankton , 1984 .

[40]  Ae Walsby,et al.  Buoyancy changes of a red coloured Oscillatoria agardhii in Lake Gjersjoen, Norway , 1983 .

[41]  A. Walsby The Biology of the Cyanobacteria , 1982 .

[42]  Ae Walsby,et al.  Interactions of cyanobacteria with light , 1982 .

[43]  A. Walsby,et al.  The role of gas vacuoles in the microstratification of a population of Oscillatoria agardhii var. isothrix in Deming Lake, Minnesota , 1974 .

[44]  Maria-Elisabeth Meffert,et al.  Cultivation and growth of two planktonic Oscillatoria species: With 11 figures and 3 tables in the text , 1971 .

[45]  E. Thomas,et al.  Der heutige Zustand des Zürichsees: Mit 9 Abbildungen im Text und auf 1 Beilage , 1948 .

[46]  Ingo Findenegg,et al.  Untersuchungen über die Ökologie und die Produktionsverhältnisse des Planktons im Kärntner Seengebiete , 1943 .