Cytoskeletal Components of an Invasion Machine—The Apical Complex of Toxoplasma gondii

The apical complex of Toxoplasma gondii is widely believed to serve essential functions in both invasion of its host cells (including human cells), and in replication of the parasite. The understanding of apical complex function, the basis for its novel structure, and the mechanism for its motility are greatly impeded by lack of knowledge of its molecular composition. We have partially purified the conoid/apical complex, identified ~200 proteins that represent 70% of its cytoskeletal protein components, characterized seven novel proteins, and determined the sequence of recruitment of five of these proteins into the cytoskeleton during cell division. Our results provide new markers for the different subcompartments within the apical complex, and revealed previously unknown cellular compartments, which facilitate our understanding of how the invasion machinery is built. Surprisingly, the extreme apical and extreme basal structures of this highly polarized cell originate in the same location and at the same time very early during parasite replication.

[1]  R. Tsien,et al.  A monomeric red fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Aaron J Mackey,et al.  Getting More from Less , 2002, Molecular & Cellular Proteomics.

[3]  B A Nichols,et al.  Cytoskeleton of Toxoplasma gondii. , 1987, The Journal of protozoology.

[4]  G. Seber,et al.  Estimating Animal Abundance: Review III , 1999 .

[5]  David S. Roos,et al.  A novel polymer of tubulin forms the conoid of Toxoplasma gondii , 2002, The Journal of cell biology.

[6]  G. Piperno,et al.  Flagellar mutants of Chlamydomonas: studies of radial spoke-defective strains by dikaryon and revertant analysis. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Boothroyd,et al.  The α- and β-tubulins of Toxoplasma gondii are encoded by single copy genes containing multiple introns , 1988 .

[8]  J. Schwartzman,et al.  Characterization of myosin-A and myosin-C: two class XIV unconventional myosins from Toxoplasma gondii. , 1999, Cell motility and the cytoskeleton.

[9]  M. Bornens,et al.  Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. , 1996, Journal of cell science.

[10]  J. Yates,et al.  DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. , 2002, Journal of proteome research.

[11]  J. Schwartzman,et al.  Immunofluorescent localization of myosin at the anterior pole of the coccidian, Toxoplasma gondii. , 1983, The Journal of protozoology.

[12]  T. Endo,et al.  Immunocytochemical localization of actin inToxoplasma gondii , 2004, Parasitology Research.

[13]  S. Parmley,et al.  Regulated secretion of multi-lamellar vesicles leads to formation of a tubulo-vesicular network in host-cell vacuoles occupied by Toxoplasma gondii. , 1995, Journal of cell science.

[14]  T. Mann,et al.  Proteolytic Processing of TgIMC1 during Maturation of the Membrane Skeleton of Toxoplasma gondii * , 2002, The Journal of Biological Chemistry.

[15]  E. Robbins,et al.  THE CENTRIOLE CYCLE IN SYNCHRONIZED HELA CELLS , 1968, The Journal of cell biology.

[16]  T. Mann,et al.  Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii. , 2001, Molecular and biochemical parasitology.

[17]  W. de Souza,et al.  Immunocytochemical localization of cytoskeletal proteins and electron microscopy of detergent extracted tachyzoites of Toxoplasma gondii. , 1985, Journal of submicroscopic cytology.

[18]  M. Iino,et al.  Junctophilins: a novel family of junctional membrane complex proteins. , 2000, Molecular cell.

[19]  A. Nesvizhskii,et al.  Experimental protein mixture for validating tandem mass spectral analysis. , 2002, Omics : a journal of integrative biology.

[20]  G. Torpier,et al.  Etude du germe infectieux de Sarcocystis tenella et Toxoplasma gondii par la technique du cryodécapage , 2004, Zeitschrift für Parasitenkunde.

[21]  J. Yates,et al.  Direct Identification of Proteins in Ultracomplex Mixtures , 2003 .

[22]  M. L. Melton,et al.  The fine structure and reproduction of Toxoplasma gondii. , 1968, The Journal of parasitology.

[23]  E. Frixione,et al.  Ca2+‐Dependence of Conoid Extrusion in Toxoplasma gondii Tachyzoites , 1996, The Journal of eukaryotic microbiology.

[24]  D. Russell,et al.  The polar ring of coccidian sporozoites: a unique microtubule-organizing centre. , 1984, Journal of cell science.

[25]  G. Torpier,et al.  Freeze fracture study of the pellicle of an eimerian sporozoite (Protozoa, Coccidia). , 1978, Journal of ultrastructure research.

[26]  J. Ajioka,et al.  Toxoplasma gondii myosins B/C , 2001, The Journal of cell biology.

[27]  J. Yates,et al.  A hypergeometric probability model for protein identification and validation using tandem mass spectral data and protein sequence databases. , 2003, Analytical chemistry.

[28]  J. Gómez‐Marín,et al.  Calmodulin Distribution and the Actomyosin Cytoskeleton in Toxoplasma gondii , 2001, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[29]  D. Roos,et al.  Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. , 1994, Methods in cell biology.

[30]  SPECIES RICHNESS ESTIMATION , 2022 .

[31]  C. Rieder,et al.  Centrosome inheritance in starfish zygotes: selective loss of the maternal centrosome after fertilization. , 1989, Developmental biology.

[32]  C. Rieder,et al.  Centriole number and the reproductive capacity of spindle poles , 1985, The Journal of cell biology.

[33]  Alexey I Nesvizhskii,et al.  Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. , 2002, Analytical chemistry.

[34]  Peter J Bradley,et al.  Proteomic Analysis of Rhoptry Organelles Reveals Many Novel Constituents for Host-Parasite Interactions in Toxoplasma gondii* , 2005, Journal of Biological Chemistry.

[35]  L. Sibley,et al.  Cytoskeleton of Apicomplexan Parasites , 2002, Microbiology and Molecular Biology Reviews.

[36]  L. Sibley,et al.  Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii. , 2002, Journal of cell science.

[37]  D. Roos,et al.  Variability and heritability of cell division pathways in Toxoplasma gondii , 2004, Journal of Cell Science.

[38]  D. Roos,et al.  Subpellicular microtubules associate with an intramembranous particle lattice in the protozoan parasite Toxoplasma gondii. , 1997, Journal of cell science.

[39]  J. Salisbury Centrin, centrosomes, and mitotic spindle poles. , 1995, Current opinion in cell biology.

[40]  Ruedi Aebersold,et al.  The Need for Guidelines in Publication of Peptide and Protein Identification Data , 2004, Molecular & Cellular Proteomics.

[41]  David L. Tabb,et al.  A proteomic view of the Plasmodium falciparum life cycle , 2002, Nature.

[42]  Robert K. Colwell,et al.  Estimating terrestrial biodiversity through extrapolation. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[43]  J. Boothroyd,et al.  The alpha- and beta-tubulins of Toxoplasma gondii are encoded by single copy genes containing multiple introns. , 1988, Molecular and biochemical parasitology.

[44]  A. Chao Nonparametric estimation of the number of classes in a population , 1984 .

[45]  D. Roos,et al.  Stable molecular transformation of Toxoplasma gondii: a selectable dihydrofolate reductase-thymidylate synthase marker based on drug-resistance mutations in malaria. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Endo,et al.  Detection and localization of actin inToxoplasma gondii , 2004, Parasitology Research.

[47]  J. Yates,et al.  Direct identification of proteins in ultracomplex mixtures. Applications to proteome analysis. , 2003, Methods in molecular biology.

[48]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[49]  R. Cole,et al.  The Opportunistic Pathogen Toxoplasma gondii Deploys a Diverse Legion of Invasion and Survival Proteins* , 2005, Journal of Biological Chemistry.

[50]  D. Roos,et al.  Daughter cell assembly in the protozoan parasite Toxoplasma gondii. , 2002, Molecular biology of the cell.

[51]  T. Endo,et al.  Detection and localization of actin in Toxoplasma gondii. , 1988, Parasitology Research.

[52]  Tanya M. Teslovich,et al.  Comparative Genomics Identifies a Flagellar and Basal Body Proteome that Includes the BBS5 Human Disease Gene , 2004, Cell.

[53]  N. D. Levine,et al.  Progress in taxonomy of the Apicomplexan protozoa. , 1988, The Journal of protozoology.

[54]  F. Seeber,et al.  Cloning and functional expression of the calmodulin gene from Toxoplasma gondii. , 1999, Molecular and biochemical parasitology.

[55]  L. Cassimeris,et al.  Organization and dynamics of growing microtubule plus ends during early mitosis. , 2003, Molecular biology of the cell.

[56]  D. Roos,et al.  Inhibition of Toxoplasma gondii replication by dinitroaniline herbicides. , 1996, Experimental parasitology.

[57]  L. Sibley,et al.  Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. , 1997, European journal of cell biology.

[58]  D. Roos,et al.  The Plastid of Toxoplasma gondii Is Divided by Association with the Centrosomes , 2000, The Journal of cell biology.

[59]  J. Yates,et al.  A method for the comprehensive proteomic analysis of membrane proteins , 2003, Nature Biotechnology.

[60]  Jason R Swedlow,et al.  Measuring tubulin content in Toxoplasma gondii: A comparison of laser-scanning confocal and wide-field fluorescence microscopy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[61]  D. Roos,et al.  Toxoplasma gondii: a family of apical antigens associated with the cytoskeleton. , 1998, Experimental parasitology.

[62]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[63]  Daniel J. Lew,et al.  Involvement of an Actomyosin Contractile Ring in Saccharomyces cerevisiae Cytokinesis , 1998, The Journal of cell biology.

[64]  Michael P. Sheetz,et al.  Cytoplasmic dynein is a minus end-directed motor for membranous organelles , 1989, Cell.

[65]  H. Boleti,et al.  Toxofilin, a novel actin-binding protein from Toxoplasma gondii, sequesters actin monomers and caps actin filaments. , 2000, Molecular biology of the cell.

[66]  Robert K. Colwell,et al.  A new statistical approach for assessing similarity of species composition with incidence and abundance data , 2004 .