A C0-discontinuous Galerkin method for the stationary quasi-geostrophic equations of the ocean

Abstract This work concerns the development of a finite-element algorithm for the stationary quasi-geostrophic equations to treat the large scale wind-driven ocean circulation. The algorithm is developed based on the streamfunction formulation involving fourth-order gradients of the streamfunction. Here, we examine the adaptation of a relatively inexpensive, nonconforming method based on C 0 basis functions. We develop the variational form of the method and establish consistency. The method weakly enforces continuity of the normal flux across interelement boundaries and stabilization is achieved via Nitsche’s method. Explicit expression for the choice of the stabilization parameter is derived. Moreover, the theoretical error estimate for the linear Stommel–Munk model is performed. Numerical results from several benchmark problems on rectangular and curved domains are provided to demonstrate the accuracy and robustness of the method. We also provide the Mediterranean sea example to demonstrate the capability of the approach to the wind-driven ocean circulation simulation.

[1]  Traian Iliescu,et al.  A two-level finite element discretization of the streamfunction formulation of the stationary quasi-geostrophic equations of the ocean , 2012, Comput. Math. Appl..

[2]  J. Dolbow,et al.  An edge-bubble stabilized finite element method for fourth-order parabolic problems , 2009 .

[3]  B. Cushman-Roisin,et al.  Introduction to geophysical fluid dynamics : physical and numerical aspects , 2011 .

[4]  George J. Fix,et al.  Finite Element Models for Ocean Circulation Problems , 1975 .

[5]  J. Dolbow,et al.  Numerical study of the grain-size dependent Young’s modulus and Poisson’s ratio of bulk nanocrystalline materials , 2012 .

[6]  Michael Ghil,et al.  Climate dynamics and fluid mechanics: Natural variability and related uncertainties , 2008, 1006.2864.

[7]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[8]  Tae-Yeon Kim,et al.  Spline-based finite-element method for the stationary quasi-geostrophic equations on arbitrary shaped coastal boundaries , 2016 .

[9]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .

[10]  Faisal Fairag A Two-Level Finite-Element Discretization of the Stream Function Form of the Navier-Stokes Equations , 1998 .

[11]  A. Majda Introduction to PDEs and Waves in Atmosphere and Ocean , 2003 .

[12]  K. Höllig Finite element methods with B-splines , 1987 .

[13]  J. McWilliams Fundamentals of Geophysical Fluid Dynamics , 2011 .

[14]  F. Fairag,et al.  Finite Element Technique for Solving the Stream Function Form of a Linearized Navier-Stokes Equations Using Argyris Element , 2004 .

[15]  Rodolfo Rodríguez,et al.  A priori and a posteriori error analysis for a large-scale ocean circulation finite element model , 2003 .

[16]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[17]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[18]  Henk A. Dijkstra,et al.  Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño, , 2000 .

[19]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[20]  Andrew J. Majda,et al.  Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows , 2006 .

[21]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[22]  Susanne C. Brenner,et al.  Isoparametric C0 interior penalty methods for plate bending problems on smooth domains , 2013 .

[23]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[24]  Tae-Yeon Kim,et al.  A numerical method for a second-gradient theory of incompressible fluid flow , 2007, J. Comput. Phys..

[25]  Patrick F. Cummins,et al.  Inertial gyres in decaying and forced geostrophic turbulence , 1992 .

[26]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[27]  Nguyen Tien Dung,et al.  A C0 discontinuous Galerkin formulation for Kirchhoff plates , 2007 .

[28]  J. Dolbow,et al.  Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .

[29]  P. Hansbo,et al.  A finite element method with discontinuous rotations for the Mindlin–Reissner plate model , 2011 .

[30]  Andrew J. Weaver,et al.  A Diagnostic Barotropic Finite-Element Ocean Circulation Model , 1995 .

[31]  Susanne C. Brenner,et al.  C0 Interior Penalty Methods for Fourth Order Elliptic Boundary Value Problems on Polygonal Domains , 2005, J. Sci. Comput..

[32]  Traian Iliescu,et al.  B-spline based finite-element method for the stationary quasi-geostrophic equations of the ocean , 2015 .

[33]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[34]  J. Dolbow,et al.  Microdomain evolution on giant unilamellar vesicles , 2013, Biomechanics and modeling in mechanobiology.

[35]  Eun‐Jae Park,et al.  A hybrid discontinuous Galerkin method for advection-diffusion-reaction problems , 2015 .

[36]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[37]  E. Fried,et al.  Numerical study of the wrinkling of a stretched thin sheet , 2012 .