Metal-substituted sponge-like MFI zeolites as high-performance catalysts for selective conversion of methanol to propylene

[1]  A. T. C. Goh,et al.  Back-propagation neural networks for modeling complex systems , 1995, Artif. Intell. Eng..

[2]  Q. Huo,et al.  Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials , 1996 .

[3]  Ji Man Kim,et al.  Synthesis of MCM-48 single crystals , 1998 .

[4]  G. Froment,et al.  Kinetic Modeling of the Methanol to Olefins Process. 1. Model Formulation , 2001 .

[5]  A. Dalai,et al.  Modeling of methanol to olefins (MTO) process in a circulating fluidized bed reactor , 2001 .

[6]  M. Seehra,et al.  Conversion of methanol to olefins over cobalt-, manganese- and nickel-incorporated SAPO-34 molecular sieves , 2003 .

[7]  G. Froment,et al.  Conceptual reactor design for the methanol-to-olefins process on SAPO-34 , 2004 .

[8]  G. Froment,et al.  Single Event Kinetic Modeling of the Methanol-to-Olefins Process on SAPO-34 , 2004 .

[9]  Tae-Wan Kim,et al.  MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer-butanol-water system. , 2005, Journal of the American Chemical Society.

[10]  S. Varma,et al.  On reduction behavior of Al2(WO4)3: A combined powder XRD and temperature programmed reduction (TPR) studies , 2005 .

[11]  M. Yamada,et al.  Artificial neural network-aided design of Co/SrCO3 catalyst for preferential oxidation of CO in excess hydrogen , 2006 .

[12]  A. Auroux Acidity and Basicity: Determination by Adsorption Microcalorimetry , 2006 .

[13]  Chengfang Zhang,et al.  Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins , 2007 .

[14]  F. Bonino,et al.  Conversion of methanol to hydrocarbons over zeolite H-ZSM-5 : On the origin of the olefinic species , 2007 .

[15]  M. Yamada,et al.  Development of a high performance Cu-based ternary oxide catalyst for oxidative steam reforming of methanol using an artificial neural network , 2008 .

[16]  Weimin Yang,et al.  Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5 , 2008 .

[17]  K. Lillerud,et al.  Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH , 2008 .

[18]  O. Terasaki,et al.  Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts , 2009, Nature.

[19]  G. Seo,et al.  IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities , 2009 .

[20]  C. Christensen,et al.  High yield of liquid range olefins obtained by converting i-propanol over zeolite H-ZSM-5. , 2009, Journal of the American Chemical Society.

[21]  A. Abramova Development of catalysts based on pentasil-type zeolites for selective synthesis of lower olefins from methanol and dimethyl ether , 2009 .

[22]  Yi Tang,et al.  Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst , 2009 .

[23]  O. Terasaki,et al.  Pillared MFI zeolite nanosheets of a single-unit-cell thickness. , 2010, Journal of the American Chemical Society.

[24]  F. Wei,et al.  In situ Synthesis of SAPO-34 Zeolites in Kaolin Microspheres for a Fluidized Methanol or Dimethyl Ether to Olefins Process , 2010 .

[25]  W. Ying,et al.  Study of coke behaviour of catalyst during methanol-to-olefins process based on a special TGA reactor , 2010 .

[26]  S. Hosseini,et al.  Gas Phase Oxidation of Toluene and Ethyl Acetate over Proton and Cobalt Exchanged ZSM-5 Nano Catalysts- Experimental Study and ANN Modeling , 2010 .

[27]  Arjan J. J. Koekkoek,et al.  Hierarchically structured Fe/ZSM-5 as catalysts for the oxidation of benzene to phenol , 2011 .

[28]  B. Wichterlová,et al.  FTIR and 27Al MAS NMR analysis of the effect of framework Al- and Si-defects in micro- and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons , 2011 .

[29]  Wen-de Xiao,et al.  Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5 , 2011 .

[30]  Kyungsu Na,et al.  Disordered Assembly of MFI Zeolite Nanosheets with a Large Volume of Intersheet Mesopores , 2011 .

[31]  J. Patarin,et al.  Surfactant-modified MFI nanosheets: a high capacity anion-exchanger. , 2011, Chemical communications.

[32]  Kyungsu Na,et al.  Hierarchically Structure-Directing Effect of Multi-Ammonium Surfactants for the Generation of MFI Zeolite Nanosheets , 2011 .

[33]  K. Domen,et al.  The influence of acidities of boron- and aluminium-containing MFI zeolites on co-reaction of methanol and ethene. , 2011, Physical chemistry chemical physics : PCCP.

[34]  Hossein Kazemian,et al.  Using Taguchi Robust Design Method to Develop an Optimized Synthesis Procedure for Nanocrystals of ZSM‐5 Zeolite , 2011 .

[35]  Nutthavich Thouchprasitchai,et al.  Statistical optimization by response surface methodology for water-gas shift reaction in a H2-rich stream over Cu–Zn–Fe composite-oxide catalysts , 2011 .

[36]  T. Dou,et al.  Selective formation of propylene from methanol over high-silica nanosheets of MFI zeolite , 2012 .

[37]  Chao Sun,et al.  The synthesis of endurable B–Al–ZSM-5 catalysts with tunable acidity for methanol to propylene reaction , 2012 .

[38]  Christodoulos A. Floudas,et al.  Process synthesis of hybrid coal, biomass, and natural gas to liquids via Fischer-Tropsch synthesis, ZSM-5 catalytic conversion, methanol synthesis, methanol-to-gasoline, and methanol-to-olefins/distillate technologies , 2012, Comput. Chem. Eng..

[39]  Behrang Izadkhah,et al.  Design and optimization of Bi-metallic Ag-ZSM5 catalysts for catalytic oxidation of volatile organic compounds , 2012 .

[40]  S. Hosseini,et al.  Modeling preparation condition and composition-activity relationship of perovskite-type LaxSr1-xFeyCo1-yO3 nano catalyst. , 2013, ACS combinatorial science.

[41]  Wenzhang Wu,et al.  Modeling of diffusion and reaction in monolithic catalysts for the methanol-to-propylene process , 2013 .

[42]  S. Asaoka,et al.  Reexamination on transition-metal substituted MFI zeolites for catalytic conversion of methanol into light olefins , 2013 .

[43]  Behrang Izadkhah,et al.  Neuro-genetic aided design of modified H-ZSM-5 catalyst for catalytic conversion of methanol to gasoline range hydrocarbons , 2013 .

[44]  Hongfang Ma,et al.  Effect of boron on ZSM-5 catalyst for methanol to propylene conversion , 2013 .

[45]  S. Mousavi,et al.  Modelling and optimization of Mn/activate carbon nanocatalysts for NO reduction: comparison of RSM and ANN techniques , 2013, Environmental technology.

[46]  Jinhui Peng,et al.  Optimization of waste tobacco stem expansion by microwave radiation for biomass material using response surface methodology , 2013 .

[47]  Ali Chamkalani,et al.  An intelligent approach for optimal prediction of gas deviation factor using particle swarm optimization and genetic algorithm , 2013 .

[48]  A. Niaei,et al.  NO reduction over nanostructure M-Cu/ZSM-5 (M: Cr, Mn, Co and Fe) bimetallic catalysts and optimization of catalyst preparation by RSM , 2013 .

[49]  S. Hosseini,et al.  Modeling and optimization of combustion process of 2-propanol over perovskite-type LaMnyCo1−yO3 nanocatalysts by an unreplicated experimental design with mixture–process variables and genetic algorithm methodology , 2014 .

[50]  Kyungsu Na,et al.  Mesoporous MFI Zeolite Nanosponge Supporting Cobalt Nanoparticles as a Fischer–Tropsch Catalyst with High Yield of Branched Hydrocarbons in the Gasoline Range , 2014 .

[51]  H. Lasa,et al.  Neat dimethyl ether conversion to olefins (DTO) over HZSM-5: Effect of SiO2/Al2O3 on porosity, surface chemistry, and reactivity , 2014 .

[52]  J. Bilbao,et al.  Modified HZSM-5 zeolites for intensifying propylene production in the transformation of 1-butene , 2014 .

[53]  M. Hartmann,et al.  Synthesis of multilamellar MFI-type zeolites under static conditions: The role of gel composition on their properties , 2014 .

[54]  S. Nabavi,et al.  Development of a New Kinetic Model for Methanol to Propylene Process on Mn/H-ZSM-5 Catalyst , 2014 .

[55]  H. Lasa,et al.  HZSM-5 Zeolites with Different SiO2/Al2O3 Ratios. Characterization and NH3 Desorption Kinetics , 2014 .

[56]  C. Falamaki,et al.  Improvement of HZSM-5 performance by alkaline treatments: Comparative catalytic study in the MTG reactions , 2014 .

[57]  R. Chakraborty,et al.  Optimization of biological-hydroxyapatite supported iron catalyzed methyl oleate synthesis using response surface methodology , 2014 .

[58]  R. Ryoo,et al.  MFI zeolite nanosponges possessing uniform mesopores generated by bulk crystal seeding in the hierarchical surfactant-directed synthesis. , 2014, Chemical communications.

[59]  M. Taghizadeh,et al.  Catalytic conversion of methanol to propylene over high-silica mesoporous ZSM-5 zeolites prepared by different combinations of mesogenous templates , 2015 .

[60]  J. Čejka,et al.  Mesoporous MFI Zeolite Nanosponge as a High-Performance Catalyst in the Pechmann Condensation Reaction , 2015 .

[61]  R. Alizadeh,et al.  Effect of second metal on the selectivity of Mn/H-ZSM-5 catalyst in methanol to propylene process , 2015 .

[62]  Yu Qian,et al.  Comparative study of coal, natural gas, and coke-oven gas based methanol to olefins processes in China , 2015, Comput. Chem. Eng..

[63]  M. Rostamizadeh,et al.  Highly selective Me-ZSM-5 catalyst for methanol to propylene (MTP) , 2015 .

[64]  M. Haddouch,et al.  Synthesis, X-ray diffraction, Raman spectroscopy and Electronic structure studies of (Ba1-xSrx)WO4 ceramics , 2015 .

[65]  A. Irandoukht,et al.  Conventional hydrothermal synthesis of nanostructured H-ZSM-5 catalysts using various templates for light olefins production from methanol , 2015 .

[66]  Sungjune Lee,et al.  Mesopore wall-catalyzed Friedel-Crafts acylation of bulky aromatic compounds in MFI zeolite nanosponge , 2015 .

[67]  C. Catlow,et al.  Room temperature methoxylation in zeolites: insight into a key step of the methanol-to-hydrocarbons process. , 2016, Chemical communications.

[68]  C. Chen,et al.  Catalytic performance of cerium modified Silicalite-1 molecular sieves in the conversion of methanol to propene , 2016 .

[69]  Hui Li,et al.  A computationally efficient multi-scale simulation of a multi-stage fixed-bed reactor for methanol to propylene reactions , 2016 .

[70]  Yuping Zhou,et al.  Comparative study on the catalytic conversion of methanol and propanal over Ga/ZSM-5 , 2016 .

[71]  R. Ryoo,et al.  Impact of pore topology and crystal thickness of nanosponge zeolites on the hydroconversion of ethylbenzene , 2016 .

[72]  Wen-De Xiao,et al.  Insight into the side reactions in methanol-to-olefin process over HZSM-5: A kinetic study , 2016 .

[73]  Young-Jin Kim,et al.  Structural and physicochemical effects of MFI zeolite nanosheets for the selective synthesis of propylene from methanol , 2016 .

[74]  J. Patarin,et al.  Particular properties of the coke formed on nano-sponge *BEA zeolite during ethanol-to-hydrocarbons transformation , 2016 .

[75]  F. Yaripour,et al.  Bifunctional and bimetallic Fe/ZSM-5 nanocatalysts for methanol to olefin reaction , 2016 .

[76]  R. Alizadeh,et al.  An intelligent approach to design and optimization of M-Mn/H-ZSM-5 (M: Ce, Cr, Fe, Ni) catalysts in conversion of methanol to propylene , 2016 .

[77]  R. Alizadeh,et al.  Selective production of propylene from methanol over nanosheets of metal-substituted MFI zeolites , 2017 .

[78]  M. Rahimpour,et al.  Application of response surface methodology for optimization of purge gas recycling to an industrial reactor for conversion of CO2 to methanol , 2017 .

[79]  M. R. K. Estahbanati,et al.  Photocatalytic valorization of glycerol to hydrogen: Optimization of operating parameters by artificial neural network , 2017 .

[80]  Ruiyue Qi,et al.  Pore fabrication of nano-ZSM-5 zeolite by internal desilication and its influence on the methanol to hydrocarbon reaction , 2017 .

[81]  R. Alizadeh,et al.  Durable and highly selective tungsten-substituted MFI metallosilicate catalysts for the methanol-to-propylene process by designing a novel feed-supply technique , 2018 .