Measuring and predicting resolution in nanopositioning systems

[1]  Paul Horowitz,et al.  The Art of Electronics , 1980 .

[2]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[3]  Alexander D. Poularikas,et al.  The handbook of formulas and tables for signal processing , 1998 .

[4]  Murti V. Salapaka,et al.  High bandwidth nano-positioner: A robust control approach , 2002 .

[5]  S. O. Reza Moheimani,et al.  Adaptive piezoelectric shunt damping , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[6]  S. O. Reza Moheimani,et al.  Optimization and implementation of multimode piezoelectric shunt damping systems , 2002 .

[7]  David S. Nyce,et al.  Linear position sensors : theory and application , 2004 .

[8]  N. Jalili,et al.  A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences , 2004 .

[9]  S. O. Reza Moheimani,et al.  Sensor-less Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[10]  Srinivasa M. Salapaka,et al.  Design methodologies for robust nano-positioning , 2005, IEEE Transactions on Control Systems Technology.

[11]  Antoine Ferreira,et al.  Virtual reality and haptics for nanorobotics , 2006, IEEE Robotics & Automation Magazine.

[12]  L.Y. Pao,et al.  A Tutorial on the Mechanisms, Dynamics, and Control of Atomic Force Microscopes , 2007, 2007 American Control Conference.

[13]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[14]  Santosh Devasia,et al.  Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators , 2007, IEEE Transactions on Control Systems Technology.

[15]  S. O. Reza Moheimani,et al.  Integral resonant control of collocated smart structures , 2007 .

[16]  S. O. Reza Moheimani,et al.  Sensor fusion for improved control of piezoelectric tube scanners , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[17]  M. Tomizuka,et al.  Precision Positioning of Wafer Scanners Segmented Iterative Learning Control for Nonrepetitive Disturbances [Applications of Control] , 2007, IEEE Control Systems.

[18]  Haris Pozidis,et al.  Nanopositioning for Probe-Based Data Storage , 2008 .

[19]  Yves F. Dufrêne,et al.  Towards nanomicrobiology using atomic force microscopy , 2008, Nature Reviews Microbiology.

[20]  M.V. Salapaka,et al.  Scanning Probe Microscopy , 2008, IEEE Control Systems.

[21]  Ampere A. Tseng,et al.  Nanofabrication: Fundamentals and Applications , 2008 .

[22]  F. Allgöwer,et al.  Simulation of dynamics-coupling in piezoelectric tube scanners by reduced order finite element analysis. , 2008, The Review of scientific instruments.

[23]  Y. Liu,et al.  Piezo-assisted in vitro fertilization of mouse oocytes with spermatozoa retrieved from epididymides stored at 4 degree C. , 2008, The Journal of reproduction and development.

[24]  S. O. Reza Moheimani,et al.  A Self Servo Writing Scheme for a MEMS Storage Device with Sub-nanometer Precision , 2008 .

[25]  Qingze Zou,et al.  Model-less inversion-based iterative control for output tracking: Piezo actuator example , 2008, 2008 American Control Conference.

[26]  Santosh Devasia,et al.  Inverse-feedforward of charge-controlled piezopositioners , 2008 .

[27]  Ian R. Petersen,et al.  Frequency locking of an optical cavity using linear–quadratic Gaussian integral control , 2008, ArXiv.

[28]  S. O. R. Moheimani,et al.  Minimizing Scanning Errors in Piezoelectric Stack-Actuated Nanopositioning Platforms , 2008 .

[29]  A. Sebastian,et al.  Nanopositioning for probe-based data storage [Applications of Control] , 2008, IEEE Control Systems.

[30]  Yang Li,et al.  Feedforward control of a piezoelectric flexure stage for AFM , 2008, 2008 American Control Conference.

[31]  B. Bhikkaji,et al.  Integral Resonant Control of a Piezoelectric Tube Actuator for Fast Nanoscale Positioning , 2008, IEEE/ASME Transactions on Mechatronics.

[32]  S. Devasia,et al.  Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.

[33]  Daniel Y. Abramovitch,et al.  Semi‐automatic tuning of PID gains for atomic force microscopes , 2009 .

[34]  Qingze Zou,et al.  A review of feedforward control approaches in nanopositioning for high-speed spm , 2009 .

[35]  A.J. Fleming Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control , 2010, IEEE/ASME Transactions on Mechatronics.

[36]  Sumeet S Aphale,et al.  A New Method for Robust Damping and Tracking Control of Scanning Probe Microscope Positioning Stages , 2010, IEEE Transactions on Nanotechnology.

[37]  Andrew J. Fleming,et al.  Integrated strain and force feedback for high-performance control of piezoelectric actuators , 2010 .

[38]  Shao-Kang Hung,et al.  Spiral scanning method for atomic force microscopy. , 2010, Journal of nanoscience and nanotechnology.

[39]  A. Fleming,et al.  Bridging the gap between conventional and video-speed scanning probe microscopes. , 2010, Ultramicroscopy.

[40]  Bharath Bhikkaji,et al.  A New Scanning Method for Fast Atomic Force Microscopy , 2011, IEEE Transactions on Nanotechnology.

[41]  W. Häberle,et al.  Scanning probe microscopy based on magnetoresistive sensing , 2011, Nanotechnology.

[42]  J. Lygeros,et al.  High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories , 2012, Nanotechnology.

[43]  Haralampos Pozidis,et al.  High-bandwidth nanopositioner with magnetoresistance based position sensing , 2012 .

[44]  K. Leang,et al.  Design and Control of a Three-Axis Serial-Kinematic High-Bandwidth Nanopositioner , 2012, IEEE/ASME Transactions on Mechatronics.

[45]  S O Reza Moheimani,et al.  High-speed Lissajous-scan atomic force microscopy: scan pattern planning and control design issues. , 2012, The Review of scientific instruments.

[46]  Jan Tommy Gravdahl,et al.  Adaptive feed-forward hysteresis compensation for piezoelectric actuators. , 2012, The Review of scientific instruments.

[47]  Kam K. Leang,et al.  Accounting for hysteresis in repetitive control design: Nanopositioning example , 2012, Autom..

[48]  Daniel Y. Abramovitch,et al.  Analysis and comparison of three discrete-time feedforward model-inverse control techniques for nonminimum-phase systems☆ , 2012 .

[49]  Abu Sebastian,et al.  Nanopositioning With Multiple Sensors: A Case Study in Data Storage , 2012, IEEE Transactions on Control Systems Technology.

[50]  S. O. Reza Moheimani,et al.  A Novel Piezoelectric Strain Sensor for Simultaneous Damping and Tracking Control of a High-Speed Nanopositioner , 2013, IEEE/ASME Transactions on Mechatronics.

[51]  Andrew J. Fleming,et al.  A review of nanometer resolution position sensors: Operation and performance , 2013 .

[52]  Brigitte Maier Handbook Of Modern Sensors Physics Designs And Applications , 2016 .