Hypermutation in human cancer genomes: footprints and mechanisms

[1]  Erika L. Moen,et al.  Abstract 5461: The role of gene body cytosine modifications in MGMT expression and sensitivity to temozolomide , 2014 .

[2]  A. McKenna,et al.  The genomic landscape of pediatric Ewing sarcoma. , 2014, Cancer discovery.

[3]  P. Sætrom,et al.  Error-free versus mutagenic processing of genomic uracil--relevance to cancer. , 2014, DNA repair.

[4]  C. Lázaro,et al.  New insights into POLE and POLD1 germline mutations in familial colorectal cancer and polyposis. , 2014, Human molecular genetics.

[5]  S. Henderson,et al.  APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. , 2014, Cell reports.

[6]  Cynthia J. Sakofsky,et al.  Break-induced replication is a source of mutation clusters underlying kataegis. , 2014, Cell reports.

[7]  N. Dhomen,et al.  Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53 , 2014, Nature.

[8]  Adam P Butler,et al.  Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer , 2014, Nature Genetics.

[9]  Bin Tean Teh,et al.  Mutation signatures of carcinogen exposure: genome-wide detection and new opportunities for cancer prevention , 2014, Genome Medicine.

[10]  David N. Cooper,et al.  Mechanisms of Base Substitution Mutagenesis in Cancer Genomes , 2014, Genes.

[11]  M. He,et al.  Frequent POLE1 p.S297F mutation in Chinese patients with ovarian endometrioid carcinoma. , 2014, Mutation research.

[12]  Steven A Roberts,et al.  Clustered and genome‐wide transient mutagenesis in human cancers: Hypermutation without permanent mutators or loss of fitness , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[13]  Erika L. Moen,et al.  Cancer Biology and Signal Transduction the Role of Gene Body Cytosine Modifications in Mgmt Expression and Sensitivity to Temozolomide , 2022 .

[14]  Zhongming Zhao,et al.  Patterns and processes of somatic mutations in nine major cancers , 2014, BMC Medical Genomics.

[15]  C. Swanton,et al.  The evolution of the unstable cancer genome. , 2014, Current opinion in genetics & development.

[16]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of urothelial bladder carcinoma , 2014, Nature.

[17]  G. Parmigiani,et al.  Heterogeneity of genomic evolution and mutational profiles in multiple myeloma , 2014, Nature Communications.

[18]  Steven J. M. Jones,et al.  Mutational Analysis Reveals the Origin and Therapy-Driven Evolution of Recurrent Glioma , 2014, Science.

[19]  S. Gabriel,et al.  Discovery and saturation analysis of cancer genes across 21 tumor types , 2014, Nature.

[20]  George Iliakis,et al.  Break-Induced Replication Repair of Damaged Forks Induces Genomic Duplications in Human Cells , 2014, Science.

[21]  J. Stamatoyannopoulos,et al.  Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair , 2013, Nature Biotechnology.

[22]  M. Stratton,et al.  RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia , 2014, Nature Genetics.

[23]  S. Elledge,et al.  Cumulative Haploinsufficiency and Triplosensitivity Drive Aneuploidy Patterns and Shape the Cancer Genome , 2013, Cell.

[24]  Peter J. Park,et al.  The Landscape of Microsatellite Instability in Colorectal and Endometrial Cancer Genomes , 2013, Cell.

[25]  D. Gordenin,et al.  The choice of nucleotide inserted opposite abasic sites formed within chromosomal DNA reveals the polymerase activities participating in translesion DNA synthesis. , 2013, DNA repair.

[26]  Wei Zheng,et al.  APOBEC3 deletion polymorphism is associated with breast cancer risk among women of European ancestry. , 2013, Carcinogenesis.

[27]  Roland Eils,et al.  Hypermutation of the Inactive X Chromosome Is a Frequent Event in Cancer , 2013, Cell.

[28]  Chris Sander,et al.  Emerging landscape of oncogenic signatures across human cancers , 2013, Nature Genetics.

[29]  Anna Malkova,et al.  Migrating bubble during break-induced replication drives conservative DNA synthesis , 2013, Nature.

[30]  Ming Yi,et al.  Guanine Holes Are Prominent Targets for Mutation in Cancer and Inherited Disease , 2013, PLoS genetics.

[31]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[32]  K. Kinzler,et al.  Mutational Signature of Aristolochic Acid Exposure as Revealed by Whole-Exome Sequencing , 2013, Science Translational Medicine.

[33]  P. A. Futreal,et al.  Genome-Wide Mutational Signatures of Aristolochic Acid and Its Application as a Screening Tool , 2013, Science Translational Medicine.

[34]  D. Gordenin,et al.  Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase zeta-dependent only for adenines and guanines , 2013, Nucleic acids research.

[35]  N. A. Temiz,et al.  Evidence for APOBEC3B mutagenesis in multiple human cancers , 2013, Nature Genetics.

[36]  Steven A. Roberts,et al.  An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers , 2013, Nature Genetics.

[37]  M. Olivier,et al.  Analysis of TP53 mutation spectra reveals the fingerprint of the potent environmental carcinogen, aristolochic acid. , 2013, Mutation research.

[38]  N. Rhind,et al.  DNA replication timing. , 2013, Cold Spring Harbor perspectives in biology.

[39]  Peter Donnelly,et al.  Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas , 2013, Nature Genetics.

[40]  Ian Tomlinson,et al.  Germline and somatic polymerase ε and δ mutations define a new class of hypermutated colorectal and endometrial cancers , 2013, The Journal of pathology.

[41]  P. Pasero,et al.  Rescuing stalled or damaged replication forks. , 2013, Cold Spring Harbor perspectives in biology.

[42]  Steven J. M. Jones,et al.  Integrated genomic characterization of endometrial carcinoma , 2013, Nature.

[43]  Wei Lu,et al.  A common deletion in the APOBEC3 genes and breast cancer risk. , 2013, Journal of the National Cancer Institute.

[44]  L. Loeb,et al.  Do mutator mutations fuel tumorigenesis? , 2013, Cancer and Metastasis Reviews.

[45]  M. Stratton,et al.  DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis , 2013, eLife.

[46]  A. Sivachenko,et al.  Punctuated Evolution of Prostate Cancer Genomes , 2013, Cell.

[47]  W. Tan,et al.  Evidence of associations of APOBEC3B gene deletion with susceptibility to persistent HBV infection and hepatocellular carcinoma. , 2013, Human molecular genetics.

[48]  A. McKenna,et al.  Exome and whole genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity , 2013, Nature Genetics.

[49]  J. Sale Translesion DNA synthesis and mutagenesis in eukaryotes. , 2013, Cold Spring Harbor perspectives in biology.

[50]  S. De,et al.  DNA replication timing and higher-order nuclear organization determine single nucleotide substitution patterns in cancer genomes , 2013, Nature Communications.

[51]  Jason B. Nikas,et al.  APOBEC3B is an enzymatic source of mutation in breast cancer , 2013, Nature.

[52]  Jean Cadet,et al.  DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. , 2013, Cold Spring Harbor perspectives in biology.

[53]  M. Stratton,et al.  Deciphering Signatures of Mutational Processes Operative in Human Cancer , 2013, Cell reports.

[54]  C. Sander,et al.  MLH1‐silenced and non‐silenced subgroups of hypermutated colorectal carcinomas have distinct mutational landscapes , 2013, The Journal of pathology.

[55]  Niranjan Nagarajan,et al.  Whole-genome reconstruction and mutational signatures in gastric cancer , 2012, Genome Biology.

[56]  Paz Polak,et al.  Differential relationship of DNA replication timing to different forms of human mutation and variation. , 2012, American journal of human genetics.

[57]  D. Gordenin,et al.  Base Damage within Single-Strand DNA Underlies In Vivo Hypermutability Induced by a Ubiquitous Environmental Agent , 2012, PLoS genetics.

[58]  J. Haber,et al.  Mutations arising during repair of chromosome breaks. , 2012, Annual review of genetics.

[59]  S. Gabriel,et al.  Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability , 2012, Genome research.

[60]  C. Shee,et al.  Two Mechanisms Produce Mutation Hotspots at DNA Breaks in Escherichia coli , 2012, Cell reports.

[61]  Li Ding,et al.  Genomic Landscape of Non-Small Cell Lung Cancer in Smokers and Never-Smokers , 2012, Cell.

[62]  Angela N. Brooks,et al.  Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing , 2012, Cell.

[63]  J. Stamatoyannopoulos What does our genome encode? , 2012, Genome research.

[64]  M. Marinus,et al.  DNA Mismatch Repair , 2012, EcoSal Plus.

[65]  Kristian Cibulskis,et al.  A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. , 2012, The Journal of clinical investigation.

[66]  B. Schuster-Böckler,et al.  Chromatin organization is a major influence on regional mutation rates in human cancer cells , 2012, Nature.

[67]  Joshua F. McMichael,et al.  The Origin and Evolution of Mutations in Acute Myeloid Leukemia , 2012, Cell.

[68]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[69]  Jill P. Mesirov,et al.  MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS , 2012, Nature.

[70]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[71]  A. Børresen-Dale,et al.  The Life History of 21 Breast Cancers , 2012, Cell.

[72]  Steven A. Roberts,et al.  Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. , 2012, Molecular cell.

[73]  HaroldC. Smith,et al.  Functions and regulation of the APOBEC family of proteins. , 2012, Seminars in cell & developmental biology.

[74]  A. McKenna,et al.  Absolute quantification of somatic DNA alterations in human cancer , 2012, Nature Biotechnology.

[75]  Andrés Aguilera,et al.  R loops: from transcription byproducts to threats to genome stability. , 2012, Molecular cell.

[76]  Arthur P. Grollman,et al.  Aristolochic acid-associated urothelial cancer in Taiwan , 2012, Proceedings of the National Academy of Sciences.

[77]  D. Lydall,et al.  Similarities and differences between “uncapped” telomeres and DNA double-strand breaks , 2012, Chromosoma.

[78]  T. Fennell,et al.  Melanoma genome sequencing reveals frequent PREX2 mutations , 2012, Nature.

[79]  A. Grollman,et al.  Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts , 2011, Nucleic acids research.

[80]  Stephen J. Salipante,et al.  Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers , 2011, Proceedings of the National Academy of Sciences.

[81]  P. Stankiewicz,et al.  Chromosome Catastrophes Involve Replication Mechanisms Generating Complex Genomic Rearrangements , 2011, Cell.

[82]  Juliane C. Dohm,et al.  Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia , 2011, Nature.

[83]  C. Laughton,et al.  Certain Imidazotetrazines Escape O6-Methylguanine-DNA Methyltransferase and Mismatch Repair , 2011, Oncology.

[84]  Hidenori Ojima,et al.  High-resolution characterization of a hepatocellular carcinoma genome , 2011, Nature Genetics.

[85]  P. Mieczkowski,et al.  Damage-induced localized hypermutability , 2011, Cell cycle.

[86]  M. Stratton Exploring the Genomes of Cancer Cells: Progress and Promise , 2011, Science.

[87]  Eleni P. Mimitou,et al.  DNA end resection--unraveling the tail. , 2011, DNA repair.

[88]  T. Ono,et al.  The mechanisms of UV mutagenesis. , 2011, Journal of radiation research.

[89]  A. Malkova,et al.  Break-Induced Replication Is Highly Inaccurate , 2011, PLoS biology.

[90]  Zev A. Binder,et al.  The Genetic Landscape of the Childhood Cancer Medulloblastoma , 2011, Science.

[91]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[92]  S. Elledge,et al.  The DNA damage response: making it safe to play with knives. , 2010, Molecular cell.

[93]  L. Loeb,et al.  Reply: Is There Any Genetic Instability in Human Cancer? , 2010, DNA repair.

[94]  D. Gordenin,et al.  A single-strand specific lesion drives MMS-induced hyper-mutability at a double-strand break in yeast. , 2010, DNA repair.

[95]  M. Lieber,et al.  Is there any genetic instability in human cancer? , 2010, DNA repair.

[96]  M. Babu,et al.  A time-invariant principle of genome evolution , 2010, Proceedings of the National Academy of Sciences.

[97]  J. Haber,et al.  Increased Mutagenesis and Unique Mutation Signature Associated with Mitotic Gene Conversion , 2010, Science.

[98]  A. Sparks,et al.  The mutation spectrum revealed by paired genome sequences from a lung cancer patient , 2010, Nature.

[99]  S. Gruber,et al.  Microsatellite instability in colorectal cancer—the stable evidence , 2010, Nature Reviews Clinical Oncology.

[100]  E. Birney,et al.  A small cell lung cancer genome reports complex tobacco exposure signatures , 2009, Nature.

[101]  Tom Royce,et al.  A comprehensive catalogue of somatic mutations from a human cancer genome , 2010, Nature.

[102]  D. Schatz,et al.  Balancing AID and DNA repair during somatic hypermutation. , 2009, Trends in immunology.

[103]  J. Stamatoyannopoulos,et al.  Human mutation rate associated with DNA replication timing , 2009, Nature Genetics.

[104]  M. Otterlei,et al.  Uracil in DNA and its processing by different DNA glycosylases , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[105]  M. Nussenzweig,et al.  AID Is Required for the Chromosomal Breaks in c-myc that Lead to c-myc/IgH Translocations , 2008, Cell.

[106]  S. Sommer,et al.  Epidemiology of Doublet/Multiplet Mutations in Lung Cancers: Evidence that a Subset Arises by Chronocoordinate Events , 2008, PloS one.

[107]  S. Schmidt,et al.  Hypermutable Non-Synonymous Sites Are under Stronger Negative Selection , 2008, PLoS genetics.

[108]  D. Gordenin,et al.  Hypermutability of Damaged Single-Strand DNA Formed at Double-Strand Breaks and Uncapped Telomeres in Yeast Saccharomyces cerevisiae , 2008, PLoS genetics.

[109]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[110]  R. Luthra,et al.  Splenic marginal zone lymphomas are characterized by loss of interstitial regions of chromosome 7q, 7q31.32 and 7q36.2 that include the protection of telomere 1 (POT1) and sonic hedgehog (SHH) genes , 2008, British journal of haematology.

[111]  K. Devarajan Nonnegative Matrix Factorization: An Analytical and Interpretive Tool in Computational Biology , 2008, PLoS Comput. Biol..

[112]  T. Kunkel,et al.  Division of labor at the eukaryotic replication fork. , 2008, Molecular cell.

[113]  Sergio Roa,et al.  The biochemistry of somatic hypermutation. , 2008, Annual review of immunology.

[114]  G. Salles,et al.  Changes in the expression of telomere maintenance genes suggest global telomere dysfunction in B-chronic lymphocytic leukemia. , 2008, Blood.

[115]  J. Bartek,et al.  DNA Damage Response as an Anti-Cancer Barrier: Damage Threshold and the Concept of 'Conditional Haploinsufficiency' , 2007, Cell cycle.

[116]  M. Nussenzweig,et al.  A role for AID in chromosome translocations between c-myc and the IgH variable region , 2007, The Journal of experimental medicine.

[117]  Rebecca A Betensky,et al.  Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. , 2007, Clinical cancer research : an official journal of the American Association for Cancer Research.

[118]  William Stafford Noble,et al.  Identification of higher-order functional domains in the human ENCODE regions. , 2007, Genome research.

[119]  M. Goodman,et al.  DNA deaminases AID and APOBEC3G act processively on single-stranded DNA. , 2007, DNA Repair.

[120]  S. Sommer,et al.  Evidence for mutation showers , 2007, Proceedings of the National Academy of Sciences.

[121]  E. Eichler,et al.  Population Stratification of a Common APOBEC Gene Deletion Polymorphism , 2007, PLoS genetics.

[122]  M. Neuberger,et al.  Somatic hypermutation: activation-induced deaminase for C/G followed by polymerase η for A/T , 2007, The Journal of experimental medicine.

[123]  I. Fijalkowska,et al.  Translesion synthesis DNA polymerases and control of genome stability. , 2006, Frontiers in bioscience : a journal and virtual library.

[124]  M. Goodman,et al.  APOBEC3G DNA deaminase acts processively 3′ → 5′ on single-stranded DNA , 2006, Nature Structural &Molecular Biology.

[125]  Tracy T Batchelor,et al.  A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. , 2006, Cancer research.

[126]  M. Lopes,et al.  Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. , 2006, Molecular cell.

[127]  G. Pfeifer,et al.  Mutations induced by ultraviolet light. , 2005, Mutation research.

[128]  R. Woodgate,et al.  The Relative Roles in Vivo of Saccharomyces cerevisiae Pol η, Pol ζ, Rev1 Protein and Pol32 in the Bypass and Mutation Induction of an Abasic Site, T-T (6-4) Photoadduct and T-T cis-syn Cyclobutane Dimer , 2005, Genetics.

[129]  D. DeMarini Genotoxicity of tobacco smoke and tobacco smoke condensate: a review. , 2004, Mutation research.

[130]  M. Evans,et al.  Oxidative DNA damage and disease: induction, repair and significance. , 2004, Mutation research.

[131]  K. Chin,et al.  In situ analyses of genome instability in breast cancer , 2004, Nature Genetics.

[132]  J. Jiricny,et al.  Mismatch repair and DNA damage signalling. , 2004, DNA repair.

[133]  T. Kunkel DNA Replication Fidelity* , 2004, Journal of Biological Chemistry.

[134]  R. Woodgate,et al.  Switching from high-fidelity replicases to low-fidelity lesion-bypass polymerases. , 2004, Current opinion in genetics & development.

[135]  I. Rogozin,et al.  Cutting Edge: DGYW/WRCH Is a Better Predictor of Mutability at G:C Bases in Ig Hypermutation Than the Widely Accepted RGYW/WRCY Motif and Probably Reflects a Two-Step Activation-Induced Cytidine Deaminase-Triggered Process , 2004, The Journal of Immunology.

[136]  M. Lai,et al.  Hepatitis C virus induces a mutator phenotype: Enhanced mutations of immunoglobulin and protooncogenes , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[137]  I. Rogozin,et al.  Theoretical analysis of mutation hotspots and their DNA sequence context specificity. , 2003, Mutation research.

[138]  F. Antequera,et al.  Structure, function and evolution of CpG island promoters , 2003, Cellular and Molecular Life Sciences CMLS.

[139]  M. Berger,et al.  Formation of DNA adducts and induction of lacI mutations in Big Blue Rat-2 cells treated with temozolomide: implications for the treatment of low-grade adult and pediatric brain tumors. , 2003, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[140]  N. Tretyakova,et al.  Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers , 2002, Oncogene.

[141]  M. Lopes,et al.  Fork Reversal and ssDNA Accumulation at Stalled Replication Forks Owing to Checkpoint Defects , 2002, Science.

[142]  V. Arlt,et al.  Aristolochic acid as a probable human cancer hazard in herbal remedies: a review. , 2002, Mutagenesis.

[143]  J. Cleaver,et al.  UV damage, DNA repair and skin carcinogenesis. , 2002, Frontiers in bioscience : a journal and virtual library.

[144]  Gouri Nanjangud,et al.  Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas , 2001, Nature.

[145]  Toshiro Matsuda,et al.  Somatic mutation hotspots correlate with DNA polymerase η error spectrum , 2001, Nature Immunology.

[146]  W. Thilly,et al.  Mismatch repair deficient human cells: spontaneous and MNNG-induced mutational spectra in the HPRT gene. , 2000, Mutation research.

[147]  Chikahide Masutani,et al.  Low fidelity DNA synthesis by human DNA polymerase-η , 2000, Nature.

[148]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[149]  S N Thibodeau,et al.  Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. , 1998, Cancer research.

[150]  K. Offit,et al.  Frequent somatic hypermutation of the 5' noncoding region of the BCL6 gene in B-cell lymphoma. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[151]  C. Lawrence,et al.  Novel mutagenic properties of abasic sites in Saccharomyces cerevisiae. , 1995, Journal of molecular biology.

[152]  A. Zuckerman,et al.  IARC Monographs on the Evaluation of Carcinogenic Risks to Humans , 1995, IARC monographs on the evaluation of carcinogenic risks to humans.

[153]  John A. Murphy,et al.  Reactions of oxyl radicals with DNA. , 1995, Free radical biology & medicine.

[154]  Bert Vogelstein,et al.  Hypermutability and mismatch repair deficiency in RER+ tumor cells , 1993, Cell.

[155]  Darryl Shibata,et al.  Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis , 1993, Nature.

[156]  K. Kinzler,et al.  Clues to the pathogenesis of familial colorectal cancer. , 1993, Science.

[157]  E. Sage DISTRIBUTION AND REPAIR OF PHOTOLESIONS IN DNA: GENETIC CONSEQUENCES AND THE ROLE OF SEQUENCE CONTEXT , 1993, Photochemistry and photobiology.

[158]  L. Loeb,et al.  Mutation spectrum of copper-induced DNA damage. , 1991, The Journal of biological chemistry.

[159]  R. Tyrrell,et al.  Mutagenesis by hydrogen peroxide treatment of mammalian cells: a molecular analysis. , 1990, Carcinogenesis.

[160]  R. Setlow,et al.  Evidence that pyrimidine dimers in DNA can give rise to tumors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[161]  L. Loeb,et al.  Errors in DNA replication as a basis of malignant changes. , 1974, Cancer research.

[162]  S. Benzer,et al.  INDUCTION OF SPECIFIC MUTATIONS WITH 5-BROMOURACIL. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[163]  humAn cArcinogens,et al.  iArc monogrAphs on the evAluAtion oF cArcinogenic risks to humAns , 2012 .

[164]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[165]  Reuben S Harris,et al.  The APOBEC3 family of retroelement restriction factors. , 2013, Current topics in microbiology and immunology.

[166]  R. Maul,et al.  AID and somatic hypermutation. , 2010, Advances in immunology.

[167]  S. Hecht,et al.  Progress and challenges in selected areas of tobacco carcinogenesis. , 2008, Chemical research in toxicology.

[168]  S. Lowe,et al.  Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. , 2007, Cancer cell.

[169]  G. Pfeifer Mutagenesis at methylated CpG sequences. , 2006, Current topics in microbiology and immunology.

[170]  M. O’Donnell,et al.  Functional Uncoupling of Twin Polymerases MECHANISM OF POLYMERASE DISSOCIATION FROM A LAGGING-STRAND BLOCK* , 2004 .