Periodic Memory State-Feedback Controller: New Formulation, Analysis, and Design Results

This paper proposes a unified setup for robust stability and performance analysis and synthesis for periodic polytopic discrete-time systems. Relying on a general formulation for state-feedback periodic memory controllers and a new time-lifting, new sufficient LMI conditions for the existence of robust stability certificates and H2 guaranteed cost control laws are derived. Comparisons of the efficiency of different controller structures illustrate these developments on a numerical example.

[1]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[2]  D. Peaucelle,et al.  Robust H2 perfomance of discrete-time periodic systems: LMIs with reduced dimensions , 2008 .

[3]  J. Stoustrup,et al.  Generalized H 2 Control Synthesis for Periodic Systems , 2004 .

[4]  Dimitri Peaucelle,et al.  Robust Hinfinity performance analysis and synthesis of linear polytopic discrete-time periodic systems via LMIs , 2007, Syst. Control. Lett..

[5]  Y. Ebihara Periodically Time‐Varying Memory State‐Feedback for Robust H2 Control of Uncertain Discrete‐Time Linear Systems , 2013 .

[6]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[7]  Dimitri Peaucelle,et al.  Robust Stability of Periodic Systems with Memory: New Formulations, Analysis and Design Results , 2012, ROCOND.

[8]  J. Geromel,et al.  Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems , 2002 .

[9]  S. Bittanti,et al.  Periodic Systems: Filtering and Control , 2008 .

[10]  M. C. D. Oliveiraa,et al.  A new discrete-time robust stability condition ( , 1999 .

[11]  Sergio Bittanti,et al.  Periodic active control of vibrations in helicopters: a gain-scheduled multi-objective approach , 2002 .

[12]  Patrizio Colaneri,et al.  Invariant representations of discrete-time periodic systems , 2000, Autom..

[13]  J. Willems,et al.  Duality for linear time invariant finite dimensional systems , 1988 .

[14]  Dimitri Peaucelle,et al.  Periodic FIR controller synthesis for discrete-time uncertain linear systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[15]  Tomomichi Hagiwara,et al.  Properties of discrete-time noncausal linear periodically time-varying scaling and their relationship with shift-invariance in lifting-timing , 2011, Int. J. Control.

[16]  C. W. Scherer,et al.  Relaxations for Robust Linear Matrix Inequality Problems with Verifications for Exactness , 2005, SIAM J. Matrix Anal. Appl..

[17]  Dimitri Peaucelle,et al.  Periodically time-varying memory state-feedback controller synthesis for discrete-time linear systems , 2011, Autom..

[18]  Dimitri Peaucelle,et al.  Robust ℌ∞ performance of periodic systems with memory: New formulations, analysis and design results , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[19]  Jakob Stoustrup,et al.  Periodic H~2 Synthesis for Spacecraft Attitude Control with Magnetorquers , 2004 .

[20]  Alexandre Megretski,et al.  A cutting plane algorithm for robustness analysis of periodically time-varying systems , 2001, IEEE Trans. Autom. Control..

[21]  C. de Souza,et al.  An LMI approach to stabilization of linear discrete-time periodic systems , 2000 .

[22]  Martin C. Berg,et al.  Multirate digital control system design , 1988 .

[23]  D. Henrion,et al.  QUADRATIC SEPARATION FOR FEEDBACK CONNECTION OF AN UNCERTAIN MATRIX AND AN IMPLICIT LINEAR TRANSFORMATION , 2005 .

[24]  Tomomichi Hagiwara,et al.  Robust Performance Analysis of Uncertain LTI Systems: Dual LMI Approach and Verifications for Exactness , 2007, IEEE Transactions on Automatic Control.

[25]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .