Capacity bounds for noncoherent fading channels with a peak constraint
暂无分享,去创建一个
Bruce E. Hajek | Krishna R. Narayanan | Vignesh Sethuraman | B. Hajek | V. Sethuraman | K. Narayanan
[1] G. Szegö. Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion , 1915 .
[2] J. Doob. Stochastic processes , 1953 .
[3] Amiel Feinstein,et al. Information and information stability of random variables and processes , 1964 .
[4] David R. Cox,et al. The Theory of Stochastic Processes , 1967, The Mathematical Gazette.
[5] I. I. Gikhman,et al. The Theory of Stochastic Processes III , 1979 .
[6] R. Gray. Entropy and Information Theory , 1990, Springer New York.
[7] Shlomo Shamai,et al. Fading Channels: Information-Theoretic and Communication Aspects , 1998, IEEE Trans. Inf. Theory.
[8] Shlomo Shamai,et al. Multiuser capacity in block fading with no channel state information , 2002, IEEE Trans. Inf. Theory.
[9] Yingbin Liang,et al. Capacity of noncoherent time-selective Rayleigh-fading channels , 2004, IEEE Transactions on Information Theory.
[10] Mahesh K. Varanasi,et al. An information-theoretic framework for deriving canonical decision-feedback receivers in Gaussian channels , 2005, IEEE Transactions on Information Theory.
[11] Bruce E. Hajek,et al. Capacity per unit energy of fading channels with a peak constraint , 2003, IEEE Transactions on Information Theory.
[12] Amos Lapidoth,et al. On the asymptotic capacity of stationary Gaussian fading channels , 2005, IEEE Transactions on Information Theory.