Radiation induced segregation near dislocations and symmetric tilt grain boundaries in Fe-Cr alloys: a phase-field study

[1]  D. Connétable,et al.  Effect of stress on vacancy formation and diffusion in fcc systems: Comparison between DFT calculations and elasticity theory , 2020, Acta Materialia.

[2]  C. Becquart,et al.  A phase field model for dislocation climb under irradiation: Formalism and applications to pure bcc iron and ferritic alloys , 2020 .

[3]  C. Domain,et al.  Phase-field calculations of sink strength in Al, Ni, and Fe: A detailed study of elastic effects , 2020 .

[4]  L. Messina,et al.  Solute-point defect interactions, coupled diffusion, and radiation-induced segregation in fcc nickel , 2020, Physical Review Materials.

[5]  L. Messina,et al.  Elastic dipole tensors and relaxation volumes of point defects in concentrated random magnetic Fe-Cr alloys , 2020, 2007.15424.

[6]  L. Messina,et al.  KineCluE: A kinetic cluster expansion code to compute transport coefficients beyond the dilute limit , 2018, Computational Materials Science.

[7]  M. Nastar,et al.  Radiation-Induced Segregation , 2020, Comprehensive Nuclear Materials.

[8]  L. Messina,et al.  Solute Diffusion by Self-Interstitial Defects and Radiation-Induced Segregation in Ferritic Fe- X ( X=Cr, Cu, Mn, Ni, P, Si) Dilute Alloys , 2019, Acta Materialia.

[9]  T. Jourdan,et al.  A continuous model including elastodiffusion for sink strength calculation of interfaces , 2018, Computational Materials Science.

[10]  F. Soisson,et al.  Atomistic modeling of α’ precipitation in Fe-Cr alloys under charged particles and neutron irradiations: Effects of ballistic mixing and sink densities , 2018, Journal of Nuclear Materials.

[11]  A. Legris,et al.  A 3D crystal plasticity model for coherency loss during precipitation , 2018, Modelling and Simulation in Materials Science and Engineering.

[12]  E. Martínez,et al.  Multiscale modeling of Radiation Induced Segregation in iron based alloys , 2018, Computational Materials Science.

[13]  M. Marinica,et al.  Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities , 2017 .

[14]  A. Legris,et al.  Microscopic Phase-Field modeling of hcp|fcc interfaces , 2017 .

[15]  D. Trinkle,et al.  Mesoscale modeling of vacancy-mediated Si segregation near an edge dislocation in Ni under irradiation , 2017 .

[16]  M. Nastar,et al.  Atomic-based phase-field method for the modeling of radiation induced segregation in Fe–Cr , 2016 .

[17]  A. Ardell,et al.  Radiation-induced solute segregation in metallic alloys , 2016 .

[18]  M. Marinica,et al.  Non-random walk diffusion enhances the sink strength of semicoherent interfaces , 2016, Nature Communications.

[19]  Y. Bréchet,et al.  Modeling radiation induced segregation in iron–chromium alloys , 2016 .

[20]  N. Wang,et al.  Phase Field Methods , 2016 .

[21]  B. Appolaire,et al.  Multiscale Theory of Dislocation Climb. , 2015, Physical review letters.

[22]  Yunzhi Wang,et al.  Phase field microelasticity model of dislocation climb: Methodology and applications , 2014 .

[23]  L. Messina,et al.  Exact ab initio transport coefficients in bcc Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys , 2014 .

[24]  Y. Bréchet,et al.  Atomistic simulations of the decomposition kinetics in Fe-Cr alloys: Influence of magnetism , 2014 .

[25]  C. Domain,et al.  Quantitative phase field model for dislocation sink strength calculations , 2014 .

[26]  D. Trinkle,et al.  Quantitative modeling of solute drag by vacancies in face-centered-cubic alloys , 2014 .

[27]  G. Was,et al.  The mechanism of radiation-induced segregation in ferritic–martensitic alloys , 2014 .

[28]  B. Appolaire,et al.  A phase field model for dislocation climb , 2014 .

[29]  D. Trinkle,et al.  Solute drag by vacancies in body-centered cubic alloys , 2013 .

[30]  Lingfei Zhang,et al.  Mesoscale modeling of coherent zirconium hydride precipitation under an applied stress , 2013 .

[31]  A. L. Udovskii,et al.  Effect of the size factor on the lattice parameter and the Debye temperature of iron alloys doped with chromium or vanadium , 2013, Russian Metallurgy (Metally).

[32]  G. Smith,et al.  Effect of grain boundary orientation on radiation-induced segregation in a Fe–15.2 at.% Cr alloy , 2013 .

[33]  P. Pareige,et al.  Characterisation of Cr, Si and P distribution at dislocations and grain-boundaries in neutron irradiated Fe–Cr model alloys of low purity , 2013 .

[34]  M. Nastar,et al.  Atomistic modeling of phase transformations: Point-defect concentrations and the time-scale problem , 2012 .

[35]  M. Nastar,et al.  Simulation of alloy thermodynamics: From an atomic to a mesoscale Hamiltonian , 2012 .

[36]  A. D. Backer,et al.  Phase-field modeling of precipitate evolution dynamics in elastically inhomogeneous low-symmetry systems: Application to hydride precipitation in Zr , 2012 .

[37]  M. Nastar,et al.  Simple concentration-dependent pair interaction model for large-scale simulations of Fe-Cr alloys , 2011, 1307.7561.

[38]  E. Martínez,et al.  Simulations of Decomposition Kinetics of Fe-Cr Solid Solutions during Thermal Aging , 2011, 1102.1091.

[39]  M. Marinica,et al.  Comparison of empirical interatomic potentials for iron applied to radiation damage studies , 2010 .

[40]  F. Carré,et al.  Structural materials challenges for advanced reactor systems , 2009 .

[41]  B. Wirth,et al.  Irradiation-induced grain boundary chromium microchemistry in high alloy ferritic steels , 2008 .

[42]  R. Car,et al.  Kinetic Monte Carlo study of radiation-induced segregation in model metallic alloys , 2007 .

[43]  F. Soisson Kinetic Monte Carlo simulations of radiation induced segregation and precipitation , 2006 .

[44]  M. Nastar,et al.  A mean field theory for diffusion in a dilute multi-component alloy: a new model for the effect of solutes on self-diffusion , 2005 .

[45]  C. Becquart,et al.  Diffusion of phosphorus in α-Fe : An ab initio study , 2005 .

[46]  Seungwu Han,et al.  Development of new interatomic potentials appropriate for crystalline and liquid iron , 2003 .

[47]  J. Kärger Atomic Transport in Solids , 1995 .

[48]  R. Johnson,et al.  Physics of Radiation Effects in Crystals , 1986 .

[49]  E. L. Allnatt,et al.  Computer simulation of phenomenological coefficients for atom transport in a random alloy , 1984 .

[50]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .

[51]  A. Allnatt Einstein and linear response formulae for the phenomenological coefficients for isothermal matter transport in solids , 1982 .

[52]  H. Wiedersich,et al.  A theory of radiation-induced segregation in concentrated alloys☆ , 1979 .

[53]  H. Rauh,et al.  On the Diffusion Process of Point Defects in the Stress Field of Edge Dislocations , 1978, April 16.

[54]  T. Waite,et al.  Theoretical Treatment of the Kinetics of Diffusion-Limited Reactions , 1957 .

[55]  W. Read,et al.  Dislocation Models of Crystal Grain Boundaries , 1950 .

[56]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .