Easily Accessible Chiral P,N‐Bidentate Aryl Phosphites, Their Complexation and Application in Enantioselective Allylic Alkylation, Sulfonylation and Hydrosilylation

New chiral P,N-hybrid aryl phosphites have been obtained by one-step phosphorylation of amino and imino alcohols. Complexation of the new ligands with [Rh(CO)2Cl]2, [Pd(COD)Cl2] and [Pd(allyl)Cl]2 was found to give chelate complexes [Rh(CO)Cl(η2-P∩N)], [PdCl2(η2-P∩N)] and [Pd(allyl)(η2-P∩N)]+Cl−, respectively. With these new P,N-ligands, up to 82% ee enantioselectivity was achieved in the Pd-catalysed alkylation of ethyl 3-penten-2-yl carbonate with dimethyl malonate, up to 80% ee in the Pd-catalysed sulfonylation of methyl 3-penten-2-yl carbonate with sodium p-toluenesulfinate, and up to 50% ee in the Rh-catalysed hydrosilylation of acetophenone with diphenylsilane. (© Wiley-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002)

[1]  G. Delapierre,et al.  Design of a new class of chiral quinoline–phosphine ligands. Synthesis and application in asymmetric catalysis , 2001 .

[2]  P. Guiry,et al.  Axially Chiral Bidentate Ligands in Asymmetric Catalysis , 2001 .

[3]  L. Dahlenburg,et al.  Funktionelle Phosphane ☆: Part XI. Optisch reine β-Aminophosphane und β-Aminophosphinite für die komplexkatalysierte Reduktion organischer Carbonylverbindungen. Molekülstrukturen von [(1R,2R)-Ph2PCH(Ph)CH(Me)NH2Me]Cl, (1R,2S)-Ph2PCH(Ph)CH(Me)NHSO2Me und [{(1R,2R)-Ph2PCH(Ph)CH(Me)NHMe-κN,κP}Rh(η4-1,5 , 2001 .

[4]  V. Davankov,et al.  Complexation properties of aminophosphites bearing phosphorus and nitrogen atoms included in six-membered cycles , 2001 .

[5]  S. E. Lyubimov,et al.  Iminophosphites as new chiral P,N-bidentate ligands , 2001 .

[6]  A. Polosukhin,et al.  Chiral P,N-bidentate ligands in coordination chemistry and organic catalysis involving rhodium and palladium , 2001 .

[7]  A. Alexakis,et al.  Synthesis and Application of Chiral Phosphorus Ligands Derived from TADDOL for the Asymmetric Conjugate Addition of Diethyl Zinc to Enones , 2000 .

[8]  J. Brunel,et al.  Enantioselective formation of quaternary centers on β-ketoesters with chiral palladium QUIPHOS catalyst , 2000 .

[9]  D. Drommi,et al.  Structural control in palladium(II)-catalyzed enantioselective allylic alkylation by new chiral phosphine-phosphite and pyridine-phosphite ligands , 2000 .

[10]  G. Franciò,et al.  New phosphoramidite and phosphito-N chiral ligands based on 8-substituted quinolines and (S)-binaphthol; applications in the Cu-catalyzed enantioselective conjugate addition of diethylzinc to 2-cyclohexen-1-one , 2000 .

[11]  P. Guiry,et al.  The application of Pd-complexes of diphenylphosphinoferrocenyloxazoline ligands to catalytic enantioselective allylic amination , 2000 .

[12]  M. Lemaire,et al.  Nitrogen-containing ligands for asymmetric homogeneous and heterogeneous catalysis. , 2000, Chemical reviews.

[13]  I. Escher,et al.  New Chiral Oxazoline-Phosphite Ligands for the Enantioselective Copper-Catalyzed 1,4-Addition of Organozinc Reagents to Enones , 2000 .

[14]  T. Katsuki,et al.  Asymmetric Allylic Alkylation Using a Palladium Complex of Chiral 2-(Phosphinoaryl)pyridine Ligands , 1999 .

[15]  A. Pfaltz,et al.  Chiral Bis(N-tosylamino)phosphine- and TADDOL-Phosphite-Oxazolines as Ligands in Asymmetric Catalysis , 1999 .

[16]  K. Ahn,et al.  Synthesis of chiral 1′-substituted oxazolinylferrocenes as chiral ligands for Pd-catalyzed allylic substitution reactions , 1999 .

[17]  A. Togni,et al.  Some aspects of asymmetric catalysis with chiral ferrocenyl ligands , 1998 .

[18]  B. Wiese,et al.  Chiral phosphinooxazolines with a bi- or tricyclic oxazoline moiety - applications in Pd-catalyzed allylic alkylations , 1998 .

[19]  A. Pfaltz,et al.  New Ligands for Regio- and Enantiocontrol in Pd-Catalyzed Allylic Alkylations. , 1998, Angewandte Chemie.

[20]  H. Brunner,et al.  Enantioselective Palladium‐Catalysed Allylation of 1,5‐Dimethylbarbituric Acid , 1998 .

[21]  B. Trost,et al.  On the Effect of a Cation Binding Site in an Asymmetric Ligand for a Catalyzed Nucleophilic Substitution Reaction , 1997 .

[22]  J. Brocard,et al.  Enantioselective synthesis of (R)- and (S)-1-ferrocenylalkylamines. Reduction of enantiopure ferrocenylimines obtained from valinol and phenylglycinol , 1997 .

[23]  A. Schnyder,et al.  Electronic Effects in Asymmetric Catalysis. Synthesis and Structure of Model Rhodium Complexes Containing Ferrocenyl Ligands for Use in the Hydroboration Reaction , 1997 .

[24]  K. Gavrilov AMINOPHOSPHITES AND AMINOAMIDOPHOSPHITES IN COORDINATION CHEMISTRY OF RHODIUM(I) , 1997 .

[25]  H. A. Ankersmit,et al.  Methyl-, acetyl- and allyl-palladium and -platinum complexes containing the novel chiral phosphorus-imine 2-(diphenylphosphino)- benzylidene-S( - )-a-methyl-benzylamine ligand , 1996 .

[26]  T. Inoue,et al.  Novel 2-amino-1,4-dihydropyridine calcium antagonists. II. Synthesis and antihypertensive effects of 2-amino-1,4-dihydropyridine derivatives having N,N-dialkylaminoalkoxycarbonyl groups at 3- and/or 5-position. , 1995, Chemical & pharmaceutical bulletin.

[27]  A. Schnyder,et al.  Strong Electronic Effects on Enantioselectivity in Rhodium‐Catalyzed Hydroborations with Novel Pyrazole‐Containing Ferrocenyl Ligands , 1995 .

[28]  H. Gais,et al.  Palladium-catalyzed asymmetric allylic sulfonylation , 1995 .

[29]  F. Cusmano,et al.  31P and 13C NMR investigation of the system tetracarbonyldi-μ-chlorodirhodium(I) — tertiary phosphine , 1993 .

[30]  M. T. Reetz,et al.  Stereoselektive Synthese von -Aminoalkoholen aus optisch aktiven a-Aminosuren , 1987 .

[31]  P. B. Mackenzie,et al.  Asymmetric synthesis. Asymmetric catalytic allylation using palladium chiral phosphine complexes , 1985 .

[32]  H. Brunner,et al.  Asymmetrische Katalysen, 13 [1]. Chelat-Liganden und ihre Rhodium-Komplexe mit seitlichen Asymmetriezentren und ihre Anwendung in der enantioselektiven Katalyse / Asymmetric Catalyses. 13 [1]. Chelate Ligands and their Rhodium Complexes with Lateral Asymmetrie Centers and their Use in Enantioselecti , 1983 .