Toward remote sensing with broadband terahertz waves

This paper studies laser air-photonics used for remote sensing of short pulses of electromagnetic radiation at terahertz frequency. Through the laser ionization process, the air is capable of generating terahertz field strengths greater than 1 MV/cm, useful bandwidths over 100 terahertz, and highly directional emission patterns. Following ionization and plasma formation, the emitted plasma acoustic or fluorescence can be modulated by an external terahertz field to serve as omnidirectional, broadband, electromagnetic sensor. These results help to close the “terahertz gap” once existing between electronic and optical frequencies, and the acoustic and fluorescence detection methodologies developed provide promising new avenues for extending the useful range of terahertz wave technology. Our experimental results indicate that by hearing the sound or seeing the fluorescence, coherent detection of broadband terahertz wave at remote distance is feasible.

[1]  Ajay Nahata,et al.  Coherent Detection of Freely Propagating Terahertz Radiation by Electro-optic Sampling in a Poled Polymer , 1996, Organic Thin Films for Photonic Applications.

[2]  L. Duenkel,et al.  Topics in Current Physics , 1991 .

[3]  Hartmut G. Roskos,et al.  Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications , 2007 .

[4]  Hartmut G Roskos,et al.  Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields. , 2010, Optics express.

[5]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[6]  Xu Xie,et al.  Coherent control of THz wave generation in ambient air. , 2006, Physical review letters.

[7]  I-Chen Ho,et al.  Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. , 2010, Optics express.

[8]  M. Villagrán-Muniz,et al.  Temporal evolution of the shock wave and hot core air in laser induced plasma , 2000 .

[9]  X-C Zhang,et al.  Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. , 2009, Physical review letters.

[10]  E. Wright,et al.  Femtosecond pulse propagation in argon: A pressure dependence study , 1998 .

[11]  A. Filin,et al.  Impact-ionization cooling in laser-induced plasma filaments. , 2009, Physical review letters.

[12]  X. Zhang,et al.  Free‐space electro‐optic sampling of terahertz beams , 1995 .

[13]  X. Zhang,et al.  Enhancement of photoacoustic emission through terahertz-field-driven electron motions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  M. Mangan,et al.  Atmospheric Propagation of THz Radiation , 2005 .

[15]  F. Théberge,et al.  Toward remote high energy terahertz generation , 2010 .

[16]  Shelton Nonlinear-optical susceptibilities of gases measured at 1064 and 1319 nm. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[17]  White,et al.  Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. , 1993, Physical review letters.

[18]  N. V. Vvedenskii,et al.  Quantum-mechanical approach for calculating the residual quasi-dc current in a plasma produced by a few-cycle laser pulse , 2009 .

[19]  T. Heinz,et al.  Detection of freely propagating terahertz radiation by use of optical second-harmonic generation. , 1998, Optics letters.

[20]  Leon J. Radziemski,et al.  Time-resolved laser-induced breakdown spectrometry of aerosols , 1983 .

[21]  Michael Pepper,et al.  Terahertz spectroscopy: Signatures and fingerprints , 2008 .

[22]  Michael J. Hoffmann,et al.  Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities , 2008 .

[23]  Iu. P. Raizer Laser-induced discharge phenomena , 1977 .

[24]  Z. Sheng,et al.  Phase-sensitive terahertz emission from gas targets irradiated by few-cycle laser pulses , 2008 .

[25]  G. Bastiaans,et al.  Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz. , 2007, Optics express.

[26]  R. Hochstrasser,et al.  Intense terahertz pulses by four-wave rectification in air. , 2000, Optics letters.

[27]  X. Zhang,et al.  Terahertz-radiation-enhanced emission of fluorescence from gas plasma. , 2009, Physical review letters.

[28]  George Rodriguez,et al.  Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions , 2008 .

[29]  Bernard Prade,et al.  Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air , 2000 .

[30]  Xu Xie,et al.  Detection of broadband terahertz waves with a laser-induced plasma in gases. , 2006, Physical review letters.

[31]  Masashi Yamaguchi,et al.  Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap” , 2008 .

[32]  X. Zhang,et al.  Laser-induced photoacoustics influenced by single-cycle terahertz radiation. , 2010, Optics letters.

[33]  Xiang Zhang,et al.  Introduction to THz Wave Photonics , 2009 .

[34]  Xiang Zhang,et al.  Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy , 2009 .

[35]  X-C Zhang,et al.  Coherent terahertz echo of tunnel ionization in gases. , 2009, Physical review letters.

[36]  R. Hochstrasser,et al.  Terahertz-field-induced second-harmonic generation measurements of liquid dynamics , 1999 .

[37]  George Rodriguez,et al.  Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. , 2007, Optics express.

[38]  Hua Zhong,et al.  Terahertz Spectroscopy and Imaging for Defense and Security Applications , 2007, Proceedings of the IEEE.

[39]  Freeman,et al.  Dynamics of the high-intensity multiphoton ionization of N2. , 1991, Physical review letters.

[40]  See Leang Chin,et al.  Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[41]  P. Jepsen,et al.  Detection of THz pulses by phase retardation in lithium tantalate. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  Xiaofei Lu,et al.  Systematic study of broadband terahertz gas sensor , 2008 .

[43]  Ni Xiao-wu,et al.  On the generation of laser-induced plasma acoustic waves , 1998 .

[44]  Jin Yu,et al.  Sonographic probing of laser filaments in air. , 2003, Applied optics.

[45]  Xicheng Zhang,et al.  Enhancement of Laser-Induced Fluorescence by Intense Terahertz Pulses in Gases , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[46]  T. Elsaesser,et al.  Generation of single-cycle THz transients with high electric-field amplitudes. , 2005, Optics letters.

[47]  R. D. Fay Plane Sound Waves of Finite Amplitude , 1931 .

[48]  A. Davies,et al.  Terahertz spectroscopy of explosives and drugs , 2008 .