Topics in Integrated Vehicle and Crew Scheduling in Public Transport

The talk deals with new models and OR techniques for an integrated approach to vehicle and crew scheduling. These techniques include explotation of network ow structures using Lagrangian relaxations and column generation, and, in particular, new algorithms for vehicle scheduling and the column generation pricing problem. Computational results obtained with real life problems will be presented as well. The design of an optimal, or cost eeective, telecommunications network is a complex, multi-faceted task. Typical problem domains consider topology, connectivity and routing decisions. Restricting attention to an optimal topology, for example, if we consider an n node network, allowing for k possible bandwidths for each link, the space of potential topologies is (k + 1) (n(n?1)=2). The term (k + 1) is included in order to allow for a link of zero capacity, i.e. not present, to be represented. For the values, n = 10 and k = 3, this evaluates to 1:2x10 27 possible designs. Even for this small problem, the search space is extremely large. If we extend this simple formulation to include the routing decision and the (ring) design, considerations which must be taken into account in any realistic solution, the problem becomes much more complex. In such cases, enumeration of all potential designs is impractical and eeective search techniques need to be employed. One such technique is the genetic algorithm 1]. The actual problem that we wish to solve is as follows: determine (a) the routes used by all traac in the network, (b) the link capacities (c) and the multi-ring topology of the network such that the overall cost of the network is minimized. Cost here is taken to mean the weighted sum of parameters of interest such as the link length, the monetary cost of providing link bandwidth, and the deviation of each link's utilization from the average (in order to balance link use, i.e. spread link usage as much as possible). In addition, cost will include a term dependent upon the multi-ring topology of the network, the main objective of this aspect is to minimise interring traac as such traac requires specialised hardware in real networks. The corresponding weighting factors used in this multiple objective optimisation problem are determined by the priorities of the global design problem and, in turn, determine the trade-oos that GA search process is willing to accept in the nal design that is generated. Network survivability is considered crucial in …

[1]  Dennis Huisman,et al.  Integrated and Dynamic Vehicle and Crew Scheduling , 1999 .

[2]  M. Fischetti,et al.  Heuristic algorithms for the multiple depot vehicle scheduling problem , 1993 .

[3]  Diego Klabjan,et al.  Integrated Airline Fleeting and Crew-Pairing Decisions , 2007, Oper. Res..

[4]  Jan Karel Lenstra,et al.  Complexity results for scheduling chains on a single machine : (preprint) , 1980 .

[5]  Jacques Desrosiers,et al.  Crew pairing for a regional carrier , 1997 .

[6]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[7]  François Soumis,et al.  A Branch-and-Cut Algorithm for the Multiple Depot Vehicle Scheduling Problem , 2001, Oper. Res..

[8]  Jonathan F. Bard,et al.  A GRASP for the Vehicle Routing Problem with Time Windows , 1995, INFORMS J. Comput..

[9]  Maud Göthe-Lundgren,et al.  A stabilized column generation scheme for the traveling salesman subtour problem , 2006, Discret. Appl. Math..

[10]  G. Rand Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop , 1982 .

[11]  Thorsten Koch,et al.  Branching rules revisited , 2005, Oper. Res. Lett..

[12]  R. Ravi,et al.  Many birds with one stone: multi-objective approximation algorithms , 1993, STOC '93.

[13]  Cid C. de Souza,et al.  Vehicle and crew scheduling for urban bus lines , 2006, Eur. J. Oper. Res..

[14]  Dennis Huisman,et al.  Applying an Integrated Approach to Vehicle and Crew Scheduling in Practice , 2000 .

[15]  Jingpeng Li,et al.  A Self-Adjusting Algorithm for Driver Scheduling , 2005, J. Heuristics.

[16]  Ten-Hwang Lai,et al.  Scheduling Independent Jobs on Hypercubes , 1988, STACS.

[17]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[18]  Claude P. Medard,et al.  Airline crew scheduling from planning to operations , 2007, Eur. J. Oper. Res..

[19]  Paolo Toth,et al.  Upper Bounds and Algorithms for Hard 0-1 Knapsack Problems , 1997, Oper. Res..

[20]  José M. P. Paixão,et al.  Multiple Depot Vehicle Scheduling Problem: A New Heuristic Based on Quasi-Assignment Algorithms , 1992 .

[21]  M. Padberg,et al.  Solving airline crew scheduling problems by branch-and-cut , 1993 .

[22]  Jeffrey S. Salowe Euclidean Spanner Graphs with Degree Four , 1994, Discret. Appl. Math..

[23]  Claude Le Pape,et al.  Branch-and-Price Heuristics: A Case Study on the Vehicle Routing Problem with Time Windows , 2005 .

[24]  H. Joksch The shortest route problem with constraints , 1966 .

[25]  Leena Suhl,et al.  Solving large multiple-depot multiple-vehicle-type bus scheduling problems in practice , 2005, OR Spectr..

[26]  Francisco Barahona,et al.  The volume algorithm: producing primal solutions with a subgradient method , 2000, Math. Program..

[27]  George L. Nemhauser,et al.  Airline Crew Recovery , 2000, Transp. Sci..

[28]  Michel Gamache,et al.  A METHOD FOR OPTIMALLY SOLVING THE ROSTERING PROBLEM , 1993 .

[29]  Martin Desrochers,et al.  A Column Generation Approach to the Urban Transit Crew Scheduling Problem , 1987, Transp. Sci..

[30]  Nicos Christofides,et al.  An algorithm for the resource constrained shortest path problem , 1989, Networks.

[31]  Elena Marchiori,et al.  An Evolutionary Algorithm for Large Scale Set Covering Problems with Application to Airline Crew Scheduling , 2000, EvoWorkshops.

[32]  Matteo Fischetti,et al.  A Heuristic Method for the Set Covering Problem , 1999, Oper. Res..

[33]  Stefan E. Karisch,et al.  Constraint Programming Based Column Generation for Crew Assignment , 2002, J. Heuristics.

[34]  Efthymios Housos,et al.  Combined bus and driver scheduling , 2002, Comput. Oper. Res..

[35]  Dennis Huisman,et al.  Combining Column Generation and Lagrangian Relaxation , 2005 .

[36]  Francisco Barahona,et al.  Plant location with minimum inventory , 1998, Math. Program..

[37]  Cid C. de Souza,et al.  Hybrid Column Generation Approaches for Urban Transit Crew Management Problems , 2005, Transp. Sci..

[38]  Giovanni Righini,et al.  A Branch-and-Price Approach to the Vehicle Routing Problem with Simultaneous Distribution and Collection , 2006, Transp. Sci..

[39]  E. S. van der Poort,et al.  Sensitivity analysis based on k-best solutions of the Traveling Salesman Problem , 1998 .

[40]  David Pisinger,et al.  A Minimal Algorithm for the 0-1 Knapsack Problem , 1997, Oper. Res..

[41]  Leena Suhl,et al.  A hybrid evolutionary algorithm for the vehicle and crew scheduling problem in public transit , 2007, 2007 IEEE Congress on Evolutionary Computation.

[42]  Kut C. So,et al.  Some heuristics for scheduling jobs on parallel machines with setups , 1990 .

[43]  Leena Suhl,et al.  Adaptive Dienst- und Umlaufplanung im ÖPNV , 2005, OR.

[44]  E Tosini,et al.  AN INTERACTIVE SYSTEM FOR EXTRA-URBAN VEHICLE AND CREW SCHEDULING PROBLEMS , 1988 .

[45]  R. Borndoerfer,et al.  Scheduling duties by adaptive column generation , 2001 .

[46]  Knut Haase,et al.  An Exact Branch and Cut Algorithm for the Vehicle and Crew Scheduling Problem , 1999 .

[47]  Celso C. Ribeiro,et al.  A Column Generation Approach to the Multiple-Depot Vehicle Scheduling Problem , 1991, Oper. Res..

[48]  M. Desrochers,et al.  A Generalized Permanent Labelling Algorithm For The Shortest Path Problem With Time Windows , 1988 .

[49]  A. Löbel Solving Large-Scale Real-World Minimum-Cost Flow Problems by a Network Simplex Method , 1996 .

[50]  Jan Karel Lenstra,et al.  Approximation algorithms for scheduling unrelated parallel machines , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[51]  Manfred W. Padberg,et al.  The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..

[52]  Dennis Huisman,et al.  Comparison of heuristic approaches for the multiple depot vehicle scheduling problem , 2006 .

[53]  Jacques Desrosiers,et al.  Simultaneous Vehicle and Crew Scheduling in Urban Mass Transit Systems , 1998, Transp. Sci..

[54]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[55]  Lawrence Bodin,et al.  A Matching Based Heuristic for Scheduling Mass Transit Crews and Vehicles , 1983 .

[56]  Jean-Marc Rousseau,et al.  Dynamic Constraint Generation in CrewOpt , a Column Generation Approach for Transit Crew Scheduling , 2004 .

[57]  Matteo Fischetti,et al.  A Polyhedral Approach to Simplified Crew Scheduling and Vehicle Scheduling Problems , 2001, Manag. Sci..

[58]  César Rego,et al.  Subgraph ejection chains and tabu search for the crew scheduling problem , 1999, J. Oper. Res. Soc..

[59]  Natashia Boland,et al.  Improved preprocessing, labeling and scaling algorithms for the Weight‐Constrained Shortest Path Problem , 2003, Networks.

[60]  Dag Wedelin,et al.  An algorithm for large scale 0–1 integer programming with application to airline crew scheduling , 1995, Ann. Oper. Res..

[61]  E. Balas,et al.  Set Partitioning: A survey , 1976 .

[62]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[63]  Jacques Desrosiers,et al.  On Compact Formulations for Integer Programs Solved by Column Generation , 2005, Ann. Oper. Res..

[64]  George L. Nemhauser,et al.  Airline Crew Scheduling: A New Formulation and Decomposition Algorithm , 1997, Oper. Res..

[65]  C. N. Potts,et al.  Scheduling with release dates on a single machine to minimize total weighted completion time , 1992, Discret. Appl. Math..

[66]  Ralf Borndörfer,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin a Column Generation Approach to Airline Crew Scheduling , 2022 .

[67]  Dennis Huisman A column generation approach to solve the crew re-scheduling problem , 2005 .

[68]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[69]  Marta Mesquita,et al.  Branching approaches for integrated vehicle and crew scheduling , 2009, Public Transp..

[70]  Raf Jans,et al.  An industrial extension of the discrete lot-sizing and scheduling problem , 2004 .

[71]  Leena Suhl,et al.  Optimierungssysteme für die Dienstplanung im ÖPNV , 2007, Wirtschaftsinformatik.

[72]  Srini Ramaswamy,et al.  Airline Crew Scheduling with Time Windows and Plane-Count Constraints , 2002, Transp. Sci..

[73]  Dimitri P. Bertsekas,et al.  A forward/reverse auction algorithm for asymmetric assignment problems , 1992, Comput. Optim. Appl..

[74]  Egon Balas,et al.  Facets of the knapsack polytope , 1975, Math. Program..

[75]  Leena Suhl,et al.  Solving the airline crew recovery problem by a genetic algorithm with local improvement , 2005, Oper. Res..

[76]  X. Gandibleux,et al.  Approximative solution methods for multiobjective combinatorial optimization , 2004 .

[77]  Uwe H. Suhl,et al.  MOPS -- Mathematical optimization system , 1994 .

[78]  Nelson Stephens,et al.  Tabu Thresholding for the Frequency Assignment Problem , 1996 .

[79]  A. J. Clewett,et al.  Introduction to sequencing and scheduling , 1974 .

[80]  William Orchard-Hays,et al.  Advanced Linear-Programming Computing Techniques , 1968 .

[81]  Marshall L. Fisher,et al.  The Lagrangian Relaxation Method for Solving Integer Programming Problems , 2004, Manag. Sci..

[82]  Jacques Desrosiers,et al.  A Column Generation Approach for Large-Scale Aircrew Rostering Problems , 1999, Oper. Res..

[83]  Samuel J. Raff,et al.  Routing and scheduling of vehicles and crews : The state of the art , 1983, Comput. Oper. Res..

[84]  Leena Suhl,et al.  A Crew Scheduling Approach for Public Transit Enhanced with Aspects from Vehicle Scheduling , 2008 .

[85]  Gilbert Laporte,et al.  Metaheuristics: A bibliography , 1996, Ann. Oper. Res..

[86]  Matteo Fischetti,et al.  The Fixed Job Schedule Problem with Working-Time Constraints , 1989, Oper. Res..

[87]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[88]  Matteo Fischetti,et al.  The Fixed Job Schedule Problem with Spread-Time Constraints , 1987, Oper. Res..

[89]  Martin Desrochers,et al.  CREW-OPT: Subproblem Modeling in a Column Generation Approach to Urban Crew Scheduling , 1992 .

[90]  A. Gonthier,et al.  Scheduling Problem with Changeover Costs in Industrial Applications , 1992 .

[91]  Martin Grötschel,et al.  Duty Scheduling in Public Transit , 2003 .

[92]  Teodor Gabriel Crainic,et al.  A branch-and-bound algorithm for depot location and container fleet management , 1995 .

[93]  F. Glover A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .

[94]  José M. P. Paixão,et al.  Vehicle Scheduling for Public Mass Transit — An Overview , 1995 .

[95]  Dennis Huisman,et al.  Vehicle and crew scheduling: solving large real-world instances with an integrated approach , 2008 .

[96]  Rastislav Galia,et al.  Modelling of Complex Costs and Rules in a Crew Pairing Column Generator , 2004 .

[97]  Yahui Zhu,et al.  On Job Scheduling on a Hypercube , 1993, IEEE Trans. Parallel Distributed Syst..

[98]  Robert E. Bixby,et al.  Very Large-Scale Linear Programming: A Case Study in Combining Interior Point and Simplex Methods , 1992, Oper. Res..

[99]  R. Kraut,et al.  Vehicle scheduling in public transit and Lagrangean pricing , 1998 .

[100]  Maddalena Nonato,et al.  An Integrated Approach to Extra-Urban Crew and Vehicle Scheduling* , 1998 .

[101]  R. H. Cardwell,et al.  Survivable network architectures for broad-band fiber optic networks: model and performance comparison , 1988 .

[102]  José Pinto Paixão,et al.  A quasi-assignment algorithm for bus scheduling , 1987, Networks.

[103]  Wayne E. Smith Various optimizers for single‐stage production , 1956 .

[104]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[105]  D. Adolphson Optimal linear-ordering. , 1973 .

[106]  Ann S. K. Kwan,et al.  Evolutionary Driver Scheduling with Relief Chains , 2001, Evolutionary Computation.

[107]  Martin Middendorf,et al.  Solving Multi-criteria Optimization Problems with Population-Based ACO , 2003, EMO.

[108]  Leena Suhl,et al.  A time-space network based exact optimization model for multi-depot bus scheduling , 2006, Eur. J. Oper. Res..

[109]  Bezalel Gavish,et al.  An approach for solving a class of transportation scheduling problems , 1979 .

[110]  Jacques Desrosiers,et al.  Selected Topics in Column Generation , 2002, Oper. Res..

[111]  G. Mitra,et al.  Integrated Decision Support Systems for Urban Transport Scheduling: Discussion of Implementation and Experience , 1988 .

[112]  Di Yuan,et al.  A Lagrangian Heuristic Based Branch-and-Bound Approach for the Capacitated Network Design Problem , 2000, Oper. Res..

[113]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[114]  P. Camerini,et al.  On improving relaxation methods by modified gradient techniques , 1975 .

[115]  Marta Mesquita,et al.  Exact algorithms for the multi-depot vehicle scheduling problem based on multicommodity network flow type formulations , 1999 .

[116]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[117]  Samir Khuller,et al.  Low-Degree Spanning Trees of Small Weight , 1996, SIAM J. Comput..

[118]  Jacques Desrosiers,et al.  Stabilized column generation for highly degenerate multiple-depot vehicle scheduling problems , 2004, Comput. Oper. Res..

[119]  Kurt Mehlhorn,et al.  Resource Constrained Shortest Paths , 2000, ESA.

[120]  Teodor Gabriel Crainic,et al.  PARALLEL BRANCH-AND-BOUND ALGORITHMS: SURVEY AND SYNTHESIS , 1993 .

[121]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[122]  Ellis L. Johnson,et al.  Airline Crew Scheduling: State-of-the-Art , 2005, Ann. Oper. Res..

[123]  Matteo Fischetti,et al.  A Branch-and-Cut Algorithm for the Multiple Depot Vehicle Scheduling Problem , 2001 .

[124]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[125]  Anthony Wren,et al.  TRACS II: a hybrid IP/heuristic driver scheduling system for public transport , 2002, J. Oper. Res. Soc..

[126]  K. Kiwiel Approximations in proximal bundle methods and decomposition of convex programs , 1995 .

[127]  L. Bianco,et al.  A set partitioning approach to the multiple depot vehicle scheduling problem , 1994 .

[128]  Marta Mesquita,et al.  Set partitioning/covering-based approaches for the integrated vehicle and crew scheduling problem , 2008, Comput. Oper. Res..

[129]  L. Bodin ROUTING AND SCHEDULING OF VEHICLES AND CREWS–THE STATE OF THE ART , 1983 .

[130]  K. Al-Sultan,et al.  A Genetic Algorithm for the Set Covering Problem , 1996 .

[131]  Amal de Silva Combining Constraint Programming and Linear Programming on an Example of Bus Driver Scheduling , 2001, Ann. Oper. Res..

[132]  M. Minoux,et al.  A new approach for crew pairing problems by column generation with an application to air transportation , 1988 .

[133]  M. Fleischer,et al.  The Measure of Pareto Optima , 2003, EMO.

[134]  Matteo Fischetti,et al.  An Additive Bounding Procedure for Combinatorial Optimization Problems , 1989, Oper. Res..

[135]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[136]  Zhi-Long Chen,et al.  Solving a Practical Pickup and Delivery Problem , 2003, Transp. Sci..

[137]  ANTHONY WREN,et al.  A genetic algorithm for public transport driver scheduling , 1995, Comput. Oper. Res..

[138]  Stefan Irnich Resource extension functions: properties, inversion, and generalization to segments , 2008, OR Spectr..

[139]  Jacques Desrosiers,et al.  Accelerating Strategies in Column Generation Methods for Vehicle Routing and Crew Scheduling Problems , 2002 .

[140]  Matteo Fischetti,et al.  The Delivery Man Problem and Cumulative Matroids , 1993, Oper. Res..

[141]  Eugene L. Lawler,et al.  Preemptive scheduling of uniform machines subject to release dates : (preprint) , 1979 .

[142]  D. M. Ryan,et al.  Express: Set Partitioning for Bus Crew Scheduling in Christchurch , 1992 .

[143]  Jacques Desrosiers,et al.  Crew Pairing at Air France , 1993 .

[144]  Anthony Wren,et al.  Bus Driver Scheduling — An Overview , 1995 .

[145]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[146]  Srini Ramaswamy,et al.  Airline Crew Scheduling with Regularity , 2001, Transp. Sci..

[147]  Janny Leung,et al.  On The Boolean Quadric Forest Polytope , 2004 .

[148]  Marshall W. Bern,et al.  The Steiner Problem with Edge Lengths 1 and 2 , 1989, Inf. Process. Lett..

[149]  Maddalena Nonato,et al.  Network Models, Lagrangean Relaxation and Subgradients Bundle Approach in Crew Scheduling Problems , 1995 .

[150]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[151]  Mattias Grönkvist,et al.  The Tail Assignment Problem , 2005 .

[152]  Natalia Kliewer,et al.  An overview on vehicle scheduling models , 2009, Public Transp..

[153]  Marco E. Lübbecke,et al.  Dual variable based fathoming in dynamic programs for column generation , 2005, Eur. J. Oper. Res..

[154]  Wenceslas Fernandez de la Vega,et al.  An Approximation Scheme for Strip Packing of Rectangles with Bounded Dimensions , 1998, Discret. Appl. Math..

[155]  Philip Wolfe,et al.  Validation of subgradient optimization , 1974, Math. Program..

[156]  Nicos Christofides,et al.  Algorithms for large scale set covering problems , 1993, Ann. Oper. Res..

[157]  Ann S. K. Kwan,et al.  Driver Scheduling Using Genetic Algorithms with Embedded Combinatorial Traits , 1999 .

[158]  M. A. Forbes,et al.  Vehicle routing and crew scheduling for metropolitan mail distribution at Australia Post , 2006, Eur. J. Oper. Res..

[159]  Dennis Huisman,et al.  Multiple-Depot Integrated Vehicle and Crew Scheduling , 2003, Transp. Sci..

[160]  Alan A. Bertossi,et al.  On some matching problems arising in vehicle scheduling models , 1987, Networks.

[161]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[162]  Ioannis Patrikalakis,et al.  A New Decomposition Scheme of the Urban Public Transport Scheduling Problem , 1992 .

[163]  Michael Forbes,et al.  An exact algorithm for multiple depot bus scheduling , 1994 .

[164]  Sanjoy Paul,et al.  Locating faults in a systematic manner in a large heterogeneous network , 1995, Proceedings of INFOCOM'95.

[165]  G. Nemhauser,et al.  Integer Programming , 2020 .

[166]  Ralf Borndörfer,et al.  A Bundle Method for Integrated Multi-Depot Vehicle and Duty Scheduling in Public Transit , 2008 .

[167]  Martin W. P. Savelsbergh,et al.  A Computational Study of Search Strategies for Mixed Integer Programming , 1999, INFORMS J. Comput..

[168]  Refael Hassin,et al.  Approximation Schemes for the Restricted Shortest Path Problem , 1992, Math. Oper. Res..

[169]  Jeffrey S. Salowe,et al.  Low-degree minimum spanning trees , 1995, Discret. Comput. Geom..

[170]  Albert P. M. Wagelmans,et al.  Models and Algorithms for Single-Depot Vehicle Scheduling , 2001, Transp. Sci..

[171]  Jacques Desrosiers,et al.  Dual-Optimal Inequalities for Stabilized Column Generation , 2003, Oper. Res..

[172]  Lucio Bianco,et al.  Scheduling of a single machine to minimize total weighted completion time subject to release dates , 1982 .

[173]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[174]  George L. Nemhauser,et al.  A Heuristic Branch-and-Price Approach for the Airline Crew Pairing Problem , 1997 .

[175]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[176]  Y. P. Aneja,et al.  Shortest chain subject to side constraints , 1983, Networks.

[177]  Stefan Irnich,et al.  Shortest Path Problems with Resource Constraints , 2005 .

[178]  Pierre Hansen,et al.  Stabilized column generation , 1998, Discret. Math..

[179]  Dennis Huisman,et al.  Models and Algorithms for Integration of Vehicle and Crew Scheduling , 2000, J. Sched..

[180]  Raymond S. K. Kwan,et al.  Tabu Search for Driver Scheduling , 2001 .

[181]  Diego Klabjan,et al.  Airline Crew Scheduling , 2003 .

[182]  Giorgio Gallo,et al.  Network models for vehicle and crew scheduling , 1984 .

[183]  R. E. Marsten,et al.  The Boxstep Method for Large-Scale Optimization , 2011, Oper. Res..

[184]  Leena Suhl,et al.  Local Branching und Branching-Strategien für Umlauf- und Dienstplanung im Regionalverkehr mit unregelmäßigen Fahrplänen , 2007 .

[185]  Jacques Desrosiers,et al.  Time Constrained Routing and Scheduling , 1992 .

[186]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[187]  Cynthia Barnhart,et al.  Deadhead Selection for the Long-Haul Crew Pairing Problem , 1995, Oper. Res..

[188]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[189]  Helena R. Lourenço,et al.  Multiobjective Metaheuristics for the Bus Driver Scheduling Problem , 2001, Transp. Sci..

[190]  Knut Haase,et al.  Duty-period-based network model for crew rescheduling in European airlines , 2006, J. Sched..